• Title/Summary/Keyword: Polyolefin Mesh

Search Result 2, Processing Time 0.015 seconds

Fog Collection/Removal System Using a Moss Filter (이끼필터를 이용한 안개 포집/제거 시스템)

  • Oh, Sunjong;Park, Minyong;Kim, Wandoo;Lim, Hyuneui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.449-455
    • /
    • 2016
  • Fog causes economic losses in transportation. It also results in health problems when it is combined with air pollutants. Considerable research efforts have focused on developing fog removal systems. However, most systems operate themselves after monitoring the fog. Additionally, continuous energy supply and maintenance are required to retain the fog-removal efficiency of the system. This study included the demonstration of a moss filter (a polyolefin mesh interlaced with moss) as a fog-removal method overcoming the limitations of the fog removal system. Three types of mosses with different surface structures were investigated to elucidate the relation between the moisture absorption rate and the structures. Among the different moss types, Hypopterygium japinicum showed the highest efficiency based on the smallest pore diameter and the largest total pore area. The visibilities with the moss filter and the polyolefin mesh were compared to perform the fog removal tests. The moss filter could provide a cost-effective and eco-friendly fog removal system with sustainability.

Environment Corresponding Package by Quantitative Mixing System with Functional Inorganic Material and Polyolefin Resin (기능성 무기물과 폴리올레핀계 수지의 정량적 혼합시스템에 의한 환경대응형 포장소재 개발)

  • Kim, Hi-Sam;Lim, Hyun-Ju;Park, Young-Mi
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • A lot of research has been made over the recent decade to develop testing packages with antimicrobial properties to improve food safety. In this study, a new method, experimental device and technology for environmental corresponding packages of polypropylene (PP) film has been developed to provide effective temperature buffering during the transport/long-term storage of grains or foodstuffs from the supplier to the market. This quantitatively optimized mixing system enabled to produce PP films with the 700$\sim$1,400d (width;1.5$\sim$3mm, thickness;0.01$\sim$0.5mm). In the whole mixing systems, the finely-granulated inorganic illite and PP virgin chip for master batch (M/B) chip was calculated by digital measurement methods, and then the M/B chip for PP film was adapted through a air jet and PP grinding method. The prepared PP film was characterized with tensile strength and elongation, far infrared radiation (FIR) emissivity, antimicrobial activity and deodorization properties. The results revealed that the two differently grain-sized illite could be show homogeneously dispersed on PP chip surface, and as the increasing of illite content, the FIR emissivity and the anion emission rate of film was increasingly improved. In both of 325 and 1,500 mesh-sized illite contained PP chip, of course the antimicrobial activity was good. But the ultimate deodorization rate for ammonia gas of PP film were found to be approximately the same.