• 제목/요약/키워드: Polynomial Neural Networks(PNN)

검색결과 45건 처리시간 0.03초

하이브리드 퍼지뉴럴네트워크의 알고리즘과 구조 (Algorithm and Architecture of Hybrid Fuzzy Neural Networks)

  • 박병준;오성권;김현기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.372-372
    • /
    • 2000
  • In this paper, we propose Neuro Fuzzy Polynomial Networks(NFPN) based on Polynomial Neural Network(PNN) and Neuro-Fuzzy(NF) for model identification of complex and nonlinear systems. The proposed NFPN is generated from the mutually combined structure of both NF and PNN. The one and the other are considered as the premise part and consequence part of NFPN structure respectively. As the premise part of NFPN, NF uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. As the consequence part of NFPN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. NFPN is available effectively for multi-input variables and high-order polynomial according to the combination of NF with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. In order to evaluate the performance of proposed models, we use the nonlinear function. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously.

  • PDF

FNN 및 PNN에 기초한 FPNN의 합성 다층 추론 구조와 알고리즘 (The Hybrid Multi-layer Inference Architectures and Algorithms of FPNN Based on FNN and PNN)

  • 박병준;오성권;김현기
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권7호
    • /
    • pp.378-388
    • /
    • 2000
  • In this paper, we propose Fuzzy Polynomial Neural Networks(FPNN) based on Polynomial Neural Networks(PNN) and Fuzzy Neural Networks(FNN) for model identification of complex and nonlinear systems. The proposed FPNN is generated from the mutually combined structure of both FNN and PNN. The one and the other are considered as the premise part and consequence part of FPNN structure respectively. As the consequence part of FPNN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. FPNN is available effectively for multi-input variables and high-order polynomial according to the combination of FNN with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. As the premise part of FPNN, FNN uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. And we use two kinds of FNN structure according to the division method of fuzzy space of input variables. One is basic FNN structure and uses fuzzy input space divided by each separated input variable, the other is modified FNN structure and uses fuzzy input space divided by mutually combined input variables. In order to evaluate the performance of proposed models, we use the nonlinear function and traffic route choice process. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously. And also performance index related to the approximation and prediction capabilities of model is evaluated and discussed.

  • PDF

비선형 공정을 위한 최적 다항식 뉴럴네트워크에 관한 연구 (A Study on Optimal Polynomial Neural Network for Nonlinear Process)

  • 김완수;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.149-151
    • /
    • 2005
  • In this paper, we propose the Optimal Polynomial Neural Networks(PNN) for nonlinear process. The PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to feedforward Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and can be generated. The each node of PNN structure uses several types of high-order polynomial such as linear, quadratic and modified quadratic, and is connected as various kinds of multi-variable inputs. The conventional PNN depends on experience of a designer that select No. of input variable, input variable and polynomial type. Therefore it is very difficult a organizing of optimized network. The proposed algorithm identified and selected No. of input variable, input variable and polynomial type by using Genetic Algorithms(GAs). In the sequel the proposed model shows not only superior results to the existing models, but also pliability in organizing of optimal network. Medical Imaging System(MIS) data is simulated in order to confirm the efficiency and feasibility of the proposed approach in this paper.

  • PDF

퍼지 및 다항식 뉴론에 기반한 새로운 동적퍼셉트론 구조 (Fuzzy and Polynomial Neuron Based Novel Dynamic Perceptron Architecture)

  • 김동원;박호성;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2762-2764
    • /
    • 2001
  • In this study, we introduce and investigate a class of dynamic perceptron architectures, discuss a comprehensive design methodology and carry out a series of numeric experiments. The proposed dynamic perceptron architectures are called as Polynomial Neural Networks(PNN). PNN is a flexible neural architecture whose topology is developed through learning. In particular, the number of layers of the PNN is not fixed in advance but is generated on the fly. In this sense, PNN is a self-organizing network. PNN has two kinds of networks, Polynomial Neuron(FPN)-based and Fuzzy Polynomial Neuron(FPN)-based networks, according to a polynomial structure. The essence of the design procedure of PN-based Self-organizing Polynomial Neural Networks(SOPNN) dwells on the Group Method of Data Handling (GMDH) [1]. Each node of the SOPNN exhibits a high level of flexibility and realizes a polynomial type of mapping (linear, quadratic, and cubic) between input and output variables. FPN-based SOPNN dwells on the ideas of fuzzy rule-based computing and neural networks. Simulations involve a series of synthetic as well as experimental data used across various neurofuzzy systems. A detailed comparative analysis is included as well.

  • PDF

다항식 뉴럴네트워크 구조의 최적 설계에 관한 연구 (A Study on the Optimal Design of Polynomial Neural Networks Structure)

  • 오성권;김동원;박병준
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권3호
    • /
    • pp.145-156
    • /
    • 2000
  • In this paper, we propose a new methodology which includes the optimal design procedure of Polynomial Neural Networks(PNN) structure for model identification of complex and nonlinear system. The proposed PNN algorithm is based on GMDA(Group Method of Data handling) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and can be generated. The each node of PNN structure uses several types of high-order polynomial such as linear, quadratic and cubic, and is connected as various kinds of multi-variable inputs. In other words, the PNN uses high-order polynomial as extended type besides quadratic polynomial used in GMDH, and the number of input of its node in each layer depends on that of variables used in the polynomial. The design procedure to obtain an optimal model structure utilizing PNN algorithm is shown in each stage. The study is illustrated with the aid of pH neutralization process data besides representative time series data for gas furnace process used widely for performance comparison, and shows that the proposed PNN algorithm can produce the model with higher accuracy than previous other works. And performance index related to approximation and prediction capabilities of model is evaluated and also discussed.

  • PDF

Design of Space Search-Optimized Polynomial Neural Networks with the Aid of Ranking Selection and L2-norm Regularization

  • Wang, Dan;Oh, Sung-Kwun;Kim, Eun-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1724-1731
    • /
    • 2018
  • The conventional polynomial neural network (PNN) is a classical flexible neural structure and self-organizing network, however it is not free from the limitation of overfitting problem. In this study, we propose a space search-optimized polynomial neural network (ssPNN) structure to alleviate this problem. Ranking selection is realized by means of ranking selection-based performance index (RS_PI) which is combined with conventional performance index (PI) and coefficients based performance index (CPI) (viz. the sum of squared coefficient). Unlike the conventional PNN, L2-norm regularization method for estimating the polynomial coefficients is also used when designing the ssPNN. Furthermore, space search optimization (SSO) is exploited here to optimize the parameters of ssPNN (viz. the number of input variables, which variables will be selected as input variables, and the type of polynomial). Experimental results show that the proposed ranking selection-based polynomial neural network gives rise to better performance in comparison with the neuron fuzzy models reported in the literatures.

입자 군집 최적화 알고리즘 기반 다항식 신경회로망의 설계 (Design of Particle Swarm Optimization-based Polynomial Neural Networks)

  • 박호성;김기상;오성권
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.398-406
    • /
    • 2011
  • In this paper, we introduce a new architecture of PSO-based Polynomial Neural Networks (PNN) and discuss its comprehensive design methodology. The conventional PNN is based on a extended Group Method of Data Handling (GMDH) method, and utilized the polynomial order (viz. linear, quadratic, and modified quadratic) as well as the number of node inputs fixed (selected in advance by designer) at Polynomial Neurons located in each layer through a growth process of the network. Moreover it does not guarantee that the conventional PNN generated through learning results in the optimal network architecture. The PSO-based PNN results in a structurally optimized structure and comes with a higher level of flexibility that the one encountered in the conventional PNN. The PSO-based design procedure being applied at each layer of PNN leads to the selection of preferred PNs with specific local characteristics (such as the number of input variables, input variables, and the order of the polynomial) available within the PNN. In the sequel, two general optimization mechanisms of the PSO-based PNN are explored: the structural optimization is realized via PSO whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the PSO-based PNN, the model is experimented with using Gas furnace process data, and pH neutralization process data. For the characteristic analysis of the given entire data with non-linearity and the construction of efficient model, the given entire system data is partitioned into two type such as Division I(Training dataset and Testing dataset) and Division II(Training dataset, Validation dataset, and Testing dataset). A comparative analysis shows that the proposed PSO-based PNN is model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

진화론적 최적 규칙베이스 퍼지다항식 뉴럴네트워크 (Genetically Optimized Rule-based Fuzzy Polynomial Neural Networks)

  • 박병준;김현기;오성권
    • 제어로봇시스템학회논문지
    • /
    • 제11권2호
    • /
    • pp.127-136
    • /
    • 2005
  • In this paper, a new architecture and comprehensive design methodology of genetically optimized Rule-based Fuzzy Polynomial Neural Networks(gRFPNN) are introduced and a series of numeric experiments are carried out. The architecture of the resulting gRFPNN results from asynergistic usage of the hybrid system generated by combining rule-based Fuzzy Neural Networks(FNN) with polynomial neural networks (PNN). FNN contributes to the formation of the premise part of the overall rule-based structure of the gRFPNN. The consequence part of the gRFPNN is designed using PNNs. At the premise part of the gRFPNN, FNN exploits fuzzy set based approach designed by using space partitioning in terms of individual variables and comes in two fuzzy inference forms: simplified and linear. As the consequence part of the gRFPNN, the development of the genetically optimized PNN dwells on two general optimization mechanism: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the gRFPNN, the models are experimented with the use of several representative numerical examples. A comparative analysis shows that the proposed gRFPNN are models with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

유전자 알고리즘 기반 최적 다항식 뉴럴네트워크 연구 및 비선형 공정으로의 응용 (A Study on GA-based Optimized Polynomial Neural Networks and Its Application to Nonlinear Process)

  • 김완수;이인태;오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.846-851
    • /
    • 2005
  • 본 논문은 최적 탐색 알고리즘인 유전자 알고리즘을 이용하여 다항식 뉴럴네트워크(Polynomial Neural Networks : PNN)의 최적 설계가 그 목적이다. 기존의 다항식 뉴럴네트워크는 확장된 GMDH(Group Method of Data Handling) 방법에 기반을 두며, 네트워크의 성장과정을 통하여 각 층의 다항식뉴런(혹은 노드)에서 고정된 (설계자에 의해 미리 선택된) 노드 입력들의 수뿐만 아니라 다항식 차수(1차, 2차, 그리고 수정된 2차식)를 이용하였다. 더구나, 그 방법은 학습을 통해 생성된 PNN이 최적 네트워크 구조를 가진다는 것을 보증하지 못한다. 그러나, 제안된 GA-based PNN 모델은 다음의 파라미터들- 즉 입력변수의 수, 입력변수, 및 다항식 차수-을 유전자 알고리즘을 이용하여 선택 동조함으로써 그 구조를 구조적으로 더 최적화된 네트워크가 되도록 하고, 기존의 PNN보다 훨씬 더 유연하고, 선호된 뉴럴 네트워크가 되도록 한다. 하중계수를 가진 합성성능지수가 그 모델의 근사화 및 일반화(예측) 능력 사이의 상호 균형을 얻기 위해 제안된다. GA-based PNN의 성능을 평가하기 위해 그 모델은 가스 터빈 발전소의 NOx 배출 공정 데이터로 실험된다. 비교해석은 제안된 GA-based PNN이 앞서 나타난 다른 지능모델보다 더 우수한 예측능력뿐만 아니라 높은 정확성을 가진 모델임을 보인다.

Advanced Polynomial Neural Networks Architecture with New Adaptive Nodes

  • Oh, Sung-Kwun;Kim, Dong-Won;Park, Byoung-Jun;Hwang, Hyung-Soo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권1호
    • /
    • pp.43-50
    • /
    • 2001
  • In this paper, we propose the design procedure of advance Polynomial Neural Networks(PNN) architecture for optimal model identification of complex and nonlinear system. The proposed PNN architecture is presented as the generic and advanced type. The essence of the design procedure dwells on the Group Method of Data Handling(GMDH). PNN is a flexible neural architecture whose structure is developed through learning. In particular, the number of layers of the PNN is not fixed in advance but is generated in a dynamic way. In this sense, PNN is a self-organizing network. With the aid of three representative numerical examples, compari-sons show that the proposed advanced PNN algorithm can produce the model with higher accuracy than previous other works. And performance index related to approximation and generalization capabilities of model is evaluated and also discussed.

  • PDF