• 제목/요약/키워드: Polymorphic Information Content

Search Result 99, Processing Time 0.025 seconds

Genetic Diversity Evaluation of Thamnocalamus spathiflorus (Trin.) Munro Accessions through Morphological and Randomly Amplified Polymorphic DNA (RAPD) Markers

  • Tiwari, Chandrakant;Bakshi, Meena;Gupta, Dinesh
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.2
    • /
    • pp.90-101
    • /
    • 2019
  • Biodiversity refers to the total number and variation among species of flora and fauna of an area. Due to tremendous biotic especially anthropogenic pressure these natural resources are being vanishing. In present study genetic diversity among accessions of Thamnocalamus spathiflorus was evaluated. A total of 51 vegetative characters and 42 primers (10-mer) were screened. Out of 42 screened primers, 28 polymorphic primers were selected for further analysis. A total of 263 bands were recorded as polymorphic whereas 48 bands were monomorphic. The resolving power (Rp) of 28 Randomly Amplified Polymorphic DNA (RAPD) primers ranged from 4.6 (OPE08) to 17.6 (OPA11). The polymorphic information content (PIC) value ranged from 0.21 (OPAH09) to 0.44 (OPG02). The result revealed high degree of genetic relatedness (56 to 80%). Cluster analysis revealed two major clusters both for morphology as well as RAPD. Unlike morphological characterization, the accession (D5) from Bahli, Rampur, Shimla (H.P.) was clustered separately from the others in RAPD cluster analysis. Accessions with closed locality grouped together through RAPD marker system however analogy was recorded for morphological traits. The study conducted reflects the utility of RAPD technique for species identification and phylogenetic studies in bamboo for conducting bamboo breeding program.

Population Structure of Mungbean Accessions Collected from South and West Asia using SSR markers

  • Kabir, Khandakar Md. Rayhanul;Park, Yong Jin
    • Korean Journal of Breeding Science
    • /
    • v.43 no.1
    • /
    • pp.14-22
    • /
    • 2011
  • In this study, 15 simple sequence repeat (SSR) markers were used to analyze the population structure of 55 mungbean accessions (34 from South Asia, 20 from West Asia, 1 sample from East Asia). A total of 56 alleles were detected, with an average of 3.73 per locus. The mean of major allele frequency, expected heterozygosity and polymorphic information content for 15 SSR loci were 0.72, 0.07 and 0.33 respectively. The mean of major allele frequency was 0.79 for South Asia, and 0.74 for West Asia. The mean of genetic diversity and polymorphic information content were almost similar for South Asian and West Asian accessions (genetic diversity 0.35 and polymorphic information content 0.29). Model-based structure analysis revealed the presence of three clusters based on genetic distance. Accessions were clearly assigned to a single cluster in which >70% of their inferred ancestry was derived from one of the model-based populations. 47 accessions (85.56%) showed membership with the clusters and 8 accessions (14.54%) were categorized as admixture. The results could be used to understanding the genetic structure of mungbean cultivars from these regions and to support effective breeding programs to broaden the genetic basis of mungbean varieties.

Genetic Diversity Analysis of South and East Asian Duck Populations Using Highly Polymorphic Microsatellite Markers

  • Seo, Dongwon;Bhuiyan, Md. Shamsul Alam;Sultana, Hasina;Heo, Jung Min;Lee, Jun Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.4
    • /
    • pp.471-478
    • /
    • 2016
  • Native duck populations have lower productivity, and have not been developed as much as commercials duck breeds. However, native ducks have more importance in terms of genetic diversity and potentially valuable economic traits. For this reason, population discriminable genetic markers are needed for conservation and development of native ducks. In this study, 24 highly polymorphic microsatellite (MS) markers were investigated using commercial ducks and native East and South Asian ducks. The average polymorphic information content (PIC) value for all MS markers was 0.584, indicating high discrimination power. All populations were discriminated using 14 highly polymorphic MS markers by genetic distance and phylogenetic analysis. The results indicated that there were close genetic relationships among populations. In the structure analysis, East Asian ducks shared more haplotypes with commercial ducks than South Asian ducks, and they had more independent haplotypes than others did. These results will provide useful information for genetic diversity studies in ducks and for the development of duck traceability systems in the market.

RAPD Polymorphism and Genetic Distance among Phenotypic Variants of Tamarindus indica

  • Mayavel, A;Vikashini, B;Bhuvanam, S;Shanthi, A;Kamalakannan, R;Kim, Ki-Won;Kang, Kyu-Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.421-428
    • /
    • 2020
  • Tamarind (Tamarindus indica L.) is one of the multipurpose tree species distributed in the tropical and sub-tropical climates. It is an important fruit yielding tree that supports the livelihood and has high social and cultural values for rural communities. The vegetative, reproductive, qualitative, and quantitative traits of tamarind vary widely. Characterization of phenotypic and genetic structure is essential for the selection of suitable accessions for sustainable cultivation and conservation. This study aimedto examine the genetic relationship among the collected accessions of sweet, red, and sour tamarind by using Random Amplified Polymorphic DNA (RAPD) primers. Nine accessions were collected from germplasm gene banks and subjected to marker analysis. Fifteen highly polymorphic primers generated a total of 169 fragments, out of which 138 bands were polymorphic. The polymorphic information content of RAPD markers varied from 0.10 to 0.44, and the Jaccard's similarity coefficient values ranged from 0.37 to 0.70. The genetic clustering showed a sizable genetic variation in the tamarind accessions at the molecular level. The molecular and biochemical variations in the selected accessions are very important for developing varieties with high sugar, anthocyanin, and acidity traits in the ongoing tamarind improvement program.

Genetic Diversity Analysis of Maintaining Lines for Kenyan Sunflower (Helianthus annus L.) Using Allele Specific SSR Markers

  • Mwangi, Esther W.;Lee, Myung-Chul;Sung, Jung Suk;Marzougui, Salem;Bwalya, Ernest C.
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.61-61
    • /
    • 2019
  • In any crop breeding program Selection and use of genetically diverse genotypes to develop cultivars with a broad genetic base is important. Molecular markers play a major role in selecting diverse genotypes. Molecular breeding programs of the crop can be made more efficient by use of molecular markers. The present study was done with an aim of analyzing genetic diversity and the population structure in 24 accessions of sunflower (Helianthus annus L.) from Kenya genetic diversity using 35 EST-SSR and gSSR primers.Out of the 35 markers 3 were not polymorphic as they indicated Polymorphic Information content( PIC) of value 0.00 and so the data analysis was done using 32 markers . The 32 set of markers used produced 29 alleles ranging from 2 to 7with a mean of 3.0 alleles per locus.The average value of polymorphic information contents(PIC) were 0.3 .Genetic diversity analysis using these markers revealed 3 major clusters. This result could be useful for designing strategies to make elite hybrid and inbreeding of crossing block for breeding and future molecular breeding programs to make elite variety.

  • PDF

Establishment of an Individual Identification System Based on Microsatellite Polymorphisms in Korean Cattle (Hanwoo)

  • Yoon, Du-Hak;Kong, Hong-Sik;Oh, Jae-Don;Lee, Jun-Heon;Cho, Byung-Wook;Kim, Jong-Dae;Jeon, Ki-Jun;Jo, Chang-Yun;Jeon, Gwang-Joo;Lee, Hak-Kyo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.762-766
    • /
    • 2005
  • This study was conducted to establish an individual identification system comprising of 19 microsatellite markers located on different bovine autosomes. The markers were typed on 257 animals from five cattle breeds. In total, 112 alleles were detected from the genotyping of 19 microsatellite markers. The average heterozygosities ranged from 0.292 to 0.824 and the polymorphic information content (PIC) ranged from 0.274 to 0.817 in Hanwoo. We found that there were differences in allele frequencies in Hanwoo when compared with other cattle breeds. The calculated cumulative power of discrimination (CPD) was 99.999% when nine microsatellite loci were used for analysis in the individual identification system. Also the matching probability, the probability that two unrelated animals would show the same genotypes, was estimated to be $0.44{\times}10^{-9}$. Therefore, the nine markers used in this study will be used for individual identification in two million Hanwoo individuals.

Genetic Diversity of the Mud Crab Scylla serrata in Micronesia based on Microsatellite Marker Analysis (마이크로세틀라이트 마커 분석을 이용한 남서태평양 일대에 서식하는 남방톱날꽃게(Scylla serrata)의 유전적 다양성)

  • Jang, Yo-Soon;Yi, Soon-Kil;Noh, Choong-Hwan;Oh, Sung-Yong
    • Ocean and Polar Research
    • /
    • v.31 no.4
    • /
    • pp.319-326
    • /
    • 2009
  • Analysis of four microsatellite markers from Mud Crab Scylla serrata revealed that there is high level of genetic diversity within this species. Genetic diversity of S. serrata was calculated using allele diversity, observed heterozygosity, expected heterozygosity (Het-exp), polymorphic information content, gene differentiation and Nei's $D_{A}$ distance. Mean polymorphic information content value was 0.797, which reflected high level of polymorphism across the loci of S. serrata. The Palau population has the highest genetic diversity (Het-exp=0.871), while the Kosrae population has the lowest genetic diversity (Hetexp=0.806). However, the geographical genetic distance among S. serrata populations from Yab, Chuuk, Pohnpei, Kosrae, and Palau were low (0.2009${\sim}$0.3350). These results suggest that despite their wide distribution, S. serrata are no different in geographical genetic diversity within the five sampled locations.

Isolation and Characterization of Microsatellite Markers in Tsaiya Duck

  • Hsiao, M.C.;Liu, H.C.;Hsu, Y.C.;Hu, Y.H.;Li, S.H.;Lee, S.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.624-627
    • /
    • 2008
  • An enrichment library of GATA-repeats from genomic DNA was constructed in this study to isolate and characterize microsatellite loci in Tsaiya duck (Anas platyrhynchos). Thirty-three microsatellite markers were developed and used to detect polymorphisms in 30 Tsaiya ducks. A total of 177 alleles were observed and all loci except APT022 were polymorphic. The number of alleles ranged from 2 to 9 with an average of 5.5 per microsatellite locus. The observed and expected heterozygosity of these polymorphic markers ranged from 0.07 to 0.93 with an average number of 0.60 and 0.10 to 0.86 with an average number of 0.61, respectively. Among the polymorphic markers, the observed heterozygosities of 23 loci were higher than 0.50 (69.70%). The polymorphism information content (PIC) in the 32 loci ranged from 0.09 to 0.83 with an average of 0.57. Seven of the 33 duck microsatellite loci had orthologs in the chicken genome, but only APT004 had a similar core repeat to chickens. These microsatellite markers will be useful in constructing a genetic linkage map for the duck and a comparative mapping with the chicken can also provide a valuable tool for studies related to biodiversity and population genetics in this duck species.

Genetically Independent Tetranucleotide to Hexanucleotide Core Motif SSR Markers for Identifying Lentinula edodes Cultivars

  • Saito, Teruaki;Sakuta, Genki;Kobayashi, Hitoshi;Ouchi, Kenji;Inatomi, Satoshi
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.466-472
    • /
    • 2019
  • For the purpose of protecting the rights of Lentinula edodes breeders, we developed a new simple sequence repeat (SSR) marker set consisting only of genetically independent tetranucleotide or longer core motifs. Using available genome sequences for five L. edodes strains, we designed primers for 13 SSR markers that amplified polymorphic sequences in 20 L. edodes cultivars. We evaluated the independence of every possible marker pair based on genotype data. Consequently, eight genetically independent markers were selected. The polymorphic information content values of the markers ranged from 0.269 to 0.764, with an average of 0.409. The markers could distinguish among 20 L. edodes cultivars and produced highly repeatable and reproducible results. The markers developed in this study will enable the precise identification of L. edodes cultivars, and may be useful for protecting breeders' rights.

Population structure analysis of Yeonsan Ogye using microsatellite markers

  • Cho, Sung Hyun;Lee, Seung-Sook;Manjula, Prabuddha;Kim, Minjun;Lee, Seung Hwan;Lee, Jun Heon;Seo, Dongwon
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.790-800
    • /
    • 2020
  • The Yeonsan Ogye (YO) chicken is a natural heritage of Korea, characterized by black feathers, skin, bones, eyes, and comb. The purebred of YO population has been reared under the natural mating system with no systematic selection and breeding plan. The purpose of this study was to identify the genetic diversity and find the optimal number of population sub-division using 12 polymorphic microsatellite (MS) markers to construct a pedigree-based breeding plan for the YO population. A total of 509 YO birds were used for this study. Genetic diversity and population structure analysis were conducted based on the MS marker genotype information. The overall average polymorphic information content value and expected heterozygosity of the population were 0.586, and 0.642, respectively. The K-mean cluster analysis based on the genetic distance result confirmed that the current YO population can be divided into three ancestry groups. Individuals in each group were evaluated based on their genetic distance to identify the potential candidates for a future breeding plan. This study concludes that a future breeding plan with known pedigree information of selected founder animals, which holds high genetic diversity, could be the best strategy to ensure the conservation of the Korean YO chicken population.