• Title/Summary/Keyword: Polymerized Complex Method

Search Result 35, Processing Time 0.023 seconds

Combinatorial Synthesis and Screening of the Tb-activated Phosphors in the System CaO-Y2O3-Al2O3 (조합화학을 이용한 CaO-Y2O3-Al2O3계의 Tb활성 형광체의 합성 및 검색)

  • Yoon, Ho-Shin;Kim, Chang-Hae;Kang, Yun-Chan;Ryu, Seung-Kon;Park, Hee-Dong
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.785-790
    • /
    • 2003
  • We have synthesized some phosphors in the system $CaO-Y_2$$O_3$-$Al_2$$O_3$by combinatorial polymerized-complex method. Composition and synthetic temperature of phosphors in the library was screened from the emission intensities of individual samples under VUV excitation. In $Tb^{ 3+}$-activated $CaO-Y_2$$O_3$-$Al_2$$O_3$, green phosphors showing good intensity were found to be X$O_3$$O_{7}$, CaYA1O$_4$, YA1O$_3$, $Y_3$$Al_{5}$$O_{12}$, $Y_4$$A1_2$$O_{9}$ .

Synthesis of Polymer-Silica Hybrid Particle by Using Polyamine Nano Complex (폴리아민 나노 복합체를 이용한 고분자-실리카 복합체 입자 합성)

  • Kim, Dong-Yeong;Seo, Jun-Hee;Lee, Byungjin;Kang, Kyoung-Ku;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2021
  • This study demonstrates a new method for the synthesis of organic-inorganic hybrid particles composed of an inorganic silica shell and organic core particles. The organic core particles are prepared with a uniform size using droplet-based microfluidic technology. In the process of preparing the organic core particles, uniform droplets are generated by independently controlling the flow rates of the dispersed phase containing photocurable resins and the continuous phase. After the generation of droplets in a microfluidic device, the droplets are photo-polymerized as particles by ultraviolet irradiation at the ends of microfluidic channels. The core particle is coated with a nano complex composed of polyallylamine hydrochloride (PAH) and phosphate ion (Pi) through strong non-covalent interactions such as hydrogen bonding and electrostatic interaction under optimized pH conditions. The polyamine nano complex rapidly induces the condensation reaction of silicic acid through the arranged amine groups of the main chain of PAH. Therefore, this method enabled the preparation of organic-inorganic hybrid particles coated with inorganic silica nanoparticles on the organic core. Finally, we demonstrated the synthesis of organic-inorganic hybrid particles in a short time under ambient and environmentally friendly conditions, and this is applicable to the production of organic-inorganic hybrid particles having various sizes and shapes.

Oxygen Permeation Properties and Phase Stability of Co-Free $La_{0.6}Sr_{0.4}Ti_{0.2}Fe_{0.8}O_{3-{\delta}}$ Oxygen Membrane

  • Kim, Ki-Young;Park, Jung-Hoon;Kim, Jong-Pyo;Son, Sou-Hwan;Park, Sang-Do
    • Korean Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.34-42
    • /
    • 2007
  • A perovskite-type ($La_{0.6}Sr_{0.4}Ti_{0.2}Fe_{0.8}O_{3-{\delta}}$) dense ceramic membrane was prepared by polymerized complex method, using citric acid as a chelating agent and ethylene glycol as an organic stabilizer. Effect of Ti addition on lanthanum-strontium ferrite mixed conductor was investigated by evaluating the thermal expansion coefficient, the oxygen flux, the electrical conductivity, and the phase stability. The thermal expansion coefficient in air was $21.19\;{\times}\;10^{-6}/K$ at 473 to 1,223 K. At the oxygen partial pressure of 0.21 atm ($20%\;O_2$), the electrical conductivity increased with temperature and then decreased after 973 K. The decrement in electrical conductivity at high temperatures was explained by a loss of the lattice oxygen. The oxygen flux increased with temperature and was $0.17\;mL/cm^2{\cdot}min$ at 1,223 K. From the temperature-dependent oxygen flux data, the activation energy of oxygen ion conduction was calculated and was 80.5 kJ/mol at 1,073 to 1,223 K. Also, the Ti-added lanthanum-strontium ferrite mixed conductor was structurally and chemically stable after 450 hours long-term test at 1,173 K.

Effect of Sealant Materials on Oxygen Permeation in Perovskite Oxide Membrane (밀봉 재료에 따른 페롭스카이트 막의 산소투과 특성)

  • Kim, Jong Pyo;Park, Jung Hoon;Yoon, Yeoil
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.382-387
    • /
    • 2008
  • $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ oxide was synthesized by polymerized complex method. Dense membrane of perovskite oxide was prepared using as-prepared powder by pressing and sintering at $1080^{\circ}C$. Leakage test was conducted on the membrane sealed by gold ring, Pyrex ring or Pyrex powder as a sealing material. The oxygen permeation flux of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ membrane increased with increasing temperature and was $0.74mL/min{\cdot}cm^2$ at $900^{\circ}C$. In the case of the membrane applied by sealing material, oxygen permeation flux of the membrane using gold ring at $950^{\circ}C$ was higher than that using Pyrex materials because the undesired spreading of Pyrex glass materials in the membrane led to the reduction of effective permeation area. Microphotograph analysis results for the membrane after permeation test confirmedthe diffusion of Pyrex glass seal into the membrane.

Fabrication and Property of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Hollow Fiber Membranes (Ba0.5Sr0.5Co0.8Fe0.2O3-δ 중공사 분리막의 제조 및 물성)

  • Jeon, Sung Il;Park, Jung Hoon;Kim, Jong Pyo;Sim, Woo Jong;Lee, Yong Taek
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ hollow fiber with o.d. 1.02 mm and i.d. 0.437 mm were fabricated by a phase-inversion spinning technique.The starting $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ precursor was synthesized by the polymerized complex method and then calcined at $900^{\circ}C$. As-prepared powder was dispersed in a polymer solution, and extruded as form of hollow fiber through a spinneret. Finallydense $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ hollow fiber membrane was obtained by sintering for 2 h at $1,080^{\circ}C$ for the application of oxygen separation. In addition, despite a very thin membrane with 0.58 mm, the BSCF hollow fiber membrane possessed a proper mechanical strength of 602.5 MPa.