• Title/Summary/Keyword: Polymeric micelles

Search Result 32, Processing Time 0.025 seconds

Fabrication of Compound K-loaded Polymeric Micelle System and its Characterization in vitro and Oral Absorption Enhancement in vivo

  • Hong, Sun-Mi;Jeon, Sang-Ok;Seo, Jo-Eun;Chun, Kyeung-Hwa;Oh, Dong-Ho;Choi, Young Wook;Lee, Do Ik;Jeong, Seong Hoon;Kang, Jae Seon;Lee, Sangkil
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3188-3194
    • /
    • 2014
  • Compound K (CK) was formulated as polymeric micelles (PM) using Pluronic$^{(R)}$ F-127 to enhance the oral absorption of CK, an intestinal bacterial metabolite of ginseng protopanaxadiol saponin. The physicochemical properties of Ck-loaded PM were characterized and an in vitro transport study using the Caco-2 cell system as well as an in vivo pharmacokinetic study using SD rats was carried out. The hydrodynamic mean particle size of CK-loaded PM (CK-PM) was $254{\pm}23.45nm$ after rehydration and the drug loading efficiency was ca. 99.9%. The FT-IR spectroscopy, X-ray diffraction, differential scanning calorimetry and scanning electron microscopy data supported the presence of a new solid phase in the PM. The $P_{app}$ value of in vitro Caco-2 cell permeation of CK-PM and the oral absorption of CK was enhanced about 1.2-fold and 2.6-fold compared to CK suspension, respectively, showing that the present PM formulation enabled an enhancement of oral CK absorption.

Functional Polymers for Drug Delivery Systems in Nanomedicines

  • Lee, Eun-Seong;Kim, Ji-Hoon;Yun, Jeong-Min;Lee, Kyung-Soo;Park, Ga-Young;Lee, Beom-Jin;Oh, Kyung-Taek
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.45-61
    • /
    • 2010
  • Polymeric based nanomedicines have been developed for diagnosing, treating, and preventing diseases in human body. The nanosized drug delivery systems having various structures such as micelles, nanogels, drug-conjugates, and polyplex were investigated for a great goal in pharmaceutics: increasing therapeutic efficacy for diseases and decreasing drug toxicity for normal tissues. The functional polymers used for constituting these drug delivery systems should have several favorable properties such as stimuli-responsibility and biodegrdability for controlled drug release, and solublization capacity for programmed drug encapsulation. This review discusses recent developments and trends of functional polymers (e.g., pH-sensitive polymers, biodegradable polymers, and cationic polymers) used for nanosized drug carriers.

A Fatty Acid Based 2-Oxazoline Monomer: More than just Renewable

  • Hoogenboom Richard;Schubert Ulrich S.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.356-356
    • /
    • 2006
  • The use of renewable feedstock is an important issue to reduce the fossil fuel consumption. In this contribution, we report the cationic ring-opening polymerization of a 2-oxazoline monomer with soybean fatty acid side chains (SoyOx) under microwave irradiation. Kinetic experiments were performed to investigate the livingness of the polymerization in both acetonitrile and in the absence of solvent. In addition, both block and statistical copolymers were prepared using the SoyOx monomer. The synthesized (co)polymers were crosslinked under UV-irradiation resulting in insoluble polymeric materials and core-crosslinked micelles.

  • PDF

Micellar Enhanced Ultrafiltration Using PEO-PPO-PEO Block Copolymer (PEO-PPO-PEO 블록공중합체를 사용한 마이셀 증진 한외여과법 (유해유기물의 가용화 및 분리특성))

  • 최영국;이동진;김정훈;김동권;이수복
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.83-86
    • /
    • 1998
  • 1. Introduction : Low molecular harmful organics such as 1-naphthol and phenol are widely used in industries, and pose serious environmental problems. Wastewater containing low molecular harmful organics may be ejected from various sources including metal-plating industries, circuit-board manufacturing process, photographic and photo-processing industries, refineries and metal-tailing leachate. The pollution of nation harbors, waterways and ground water resources with these organics has reached critical portions, and might also give hazardous influence on human health. Micellar enhanced ultrafiltration(MEUF) is a recently developed process to remove dissolved organics and/or heavy metals present in small or trace quantities from aqueous solution. In this system, the fatal defect is leakage of surfactants especially at low concentration below CMC(critical micelle concentration), which becomes a secondary pollution. Our group proposed to use biosurfactant and polymeric micelle to solve problems mentioned above. In this study we investigated a modified MEUF using PEO-PPO-PEO (polyethyleneoxide-polypropyleneoxide-polyethyleneoxide) block copolymers for the removal of organic solutes such as 1-naphthol and phenol from aqueous wastewater. We proposed PEO-PPO-PEO block copolymers as new surfactants for forming micelles in MEUF, and investigated the solubilization characteristics and efficiency for the removal of 1-naphthol and phenol. PEO-PPO-PEO block copolymers are, environmentally mild and safe as biosurfactants.

  • PDF

Application of sickle red blood cells for targeted cancer therapy (항암치료를 위한 겸형적혈구의 응용)

  • Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.715-717
    • /
    • 2016
  • Conventional drug carriers such as liposomes, nanoparticles, polymer micelles, polymeric conjugate and lipid microemulsion for cancer chemotherapy shield normal tissues from toxic drugs to treat cancer cells in tumors. However, inaccurate tumor targeting uncontrolled drug release from the carriers and unwanted accumulation in healthy sites can limit treatment efficacy with current conventional drug carriers with insufficient concentrations of drugs in the tumors and unexpected side effects as a result. In this research, we examined the use of sickle red blood cells as a new drug carrier with novel tumor targeting and controlled release properties. Sickle red blood cells show natural tumor preferential accumulation without any manipulation and controlled drug release is possible using a hemolysis method with photosensitizers.

  • PDF

Surface Chemistry in Biocompatible Nanocolloidal Particles (생체 적합한 나노입자와 계면화학)

  • Kim Jong-Duk;Jung Jae Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.295-305
    • /
    • 2004
  • Colloid and surface chemistry have been focused on surface area and surface energy. Local surface properties such as surface density, interaction, molecular orientation and reactivity have been one of interesting subjects. Systems of such surface energy being important would be listed as association colloid, emulsion, particle dispersion, foam, and 2-D surface and film. Such nanoparticle systems would be applied to drug delivery systems and functional cosmetics with biocompatible and degradable materials, while nanoparticles having its size of several nm to micron, and wide surface area, have been accepted as a possible drug carrier because their preparation, characteristics and drug loading have been inves-tigated. The biocompatible carriers were also used for the solubilization of insoluble drugs, the enhancement of skin absorption, the block out of UV radiation, the chemical stabilization and controlled release. Nano/micro emulstion system is classified into nano/microsphere, nano/microcapsule, nano/microemulsion, polymeric micelle, liposome according to its prep-aration method and size. Specially, the preparation method and industrial applications have been introduced for polymeric micelles self-assembled in aqueous solution, nano/microapsules controlling the concentration and activity of high concen-tration and activity materials, and monolayer or multilayer liposomes carrying bioactive ingredients.

Application and therapeutic effects of sickle red blood cells for targeted cancer therapy (표적항암치료를 위한 겸형적혈구의 응용 및 치료 효과)

  • Choe, Se-woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2395-2400
    • /
    • 2016
  • Conventional drug carriers such as liposomes, nanoparticles, polymer micelles, polymeric conjugate and lipid microemulsion for cancer chemotherapy shield normal tissues from toxic drugs to treat cancer cells in tumors. However, inaccurate tumor targeting uncontrolled drug release from the carriers and unwanted accumulation in healthy sites can limit treatment efficacy with current conventional drug carriers with insufficient concentrations of drugs in the tumors and unexpected side effects as a result. Sickle red blood cells show natural tumor preferential accumulation without any manipulation due to the adhesive interaction between molecular receptors on the membrane surface and counter-receptor on endothelial cells. In addition, structural changes of microvascular in tumor sites enhances polymerization of sickle red blood cells. In this research, we examined the use of sickle red blood cells as a new drug carrier with novel tumor targeting and controlled release properties to quantify its therapeutic effects.

Multiwalled Carbon Nanotubes Functionalized with PS via Emulsion Polymerization

  • Park, In-Cheol;Park, Min;Kim, Jun-Kyung;Lee, Hyun-Jung;Lee, Moo-Sung
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.498-505
    • /
    • 2007
  • This study demonstrated the in-situ functionalization with polymers of multi-walled carbon nanotubes (MWNTs) via emulsion polymerization. Polystyrene-functionalized MWNTs were prepared in an aqueous solution containing styrene monomer, non-ionic surfactant and a cationic coupling agent ([2-(methacryloyloxy)ethyl]trime-thylammonium chloride (MATMAC)). This process produced an interesting morphology in which the MWNTs, consisting of bead-string shapes or MWNTs embedded in the beads, when polymer beads were sufficiently large, produced nanohybrid material. This morphology was attributed to the interaction between the cationic coupling agent and the nanotube surface which induced polymerization within the hemimicellar or hemicylindrical structures of surfactant micelles on the surface of the nanotubes. In a solution containing MATMAC alone without surfactant, carbon nanotubes (CNTs) were not well-dispersed, and in a solution containing only surfactant without MATMAC, polymeric beads were synthesized in isolation from CNTs and continued to exist separately. The incorporation of MATMAC and surfactant together enabled large amounts of CNTs (> 0.05 wt%) to be well-dispersed in water and very effectively encapsulated by polymer chains. This method could be applied to other well-dispersed CNT solutions containing amphiphilic molecules, regardless of the type (i.e., anionic, cationic or nonionic). In this way, the solubility and dispersion of nanotubes could be increased in a solvent or polymer matrix. By enhancing the interfacial adhesion, this method might also contribute to the improved dispersion of nanotubes in a polymer matrix and thus the creation of superior polymer nanocomposites.

Physiochemical Properties of Binary Pluronic Systems for Reversal of Multi-drug Resistant (MDR) Cancers

  • Yun, Jung-Min;Park, Ga-Young;Kim, Ha-Hyung;Lee, Jae-Hwi;Lee, Eun-Seong;Youn, Yu-Seok;Lee, Beom-Jin;Oh, Young-Taik;Oh, Kyung-Taek
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.4
    • /
    • pp.255-261
    • /
    • 2010
  • Pluronic as pharmaceutical excipients are listed in the US and British Pharmacopoeia. In particular, Pluronics exist as different compositions and display abundant phases as self-assembling into polymeric micelles with various morphologies depending on the aqueous solvent quality, the composition of structure, and hydrophilic-lipophilic balance (HLB). Pluronics were also known as a P-gp modulator, which was exploited as a reversal molecule of multi-drug resistant (MDR) cancers. We selected a lamella forming Pluronic L92 which has high hydrophobicity and relatively long PEO block among L series of Pluronics. The dispersion of L92 showed great size particles and low stability. To increase the stability and to decrease the particle size, secondary Pluronics (F68, F88, F98, F127, P85, P105, and P123) with relatively long PEO chain were added into 0.1 wt% Pluronic L92 dispersion. The stability of binary systems was increased due to incorporated long PEO chain. Their particle sizes slightly decreased to over 200~400 nm and their solubilization capacity of binary systems didn't change except Pluronic L92/P123 mixtures. The L92/P123 systems showed ca. 100 nm sizes and lowest turbidity among the all systems. The solubilization capacity of 0.1 wt% L92/0.1 wt% P123 was slightly increased compared to 0.1 wt% L92 mono system and other binary systems. These nano-sized binary systems may have potential as alternative drug delivery systems with simple preparation method and overcome the drawbacks of mono systems such as low stability and loading capacity.

Preparation of Core-shell Type Nanoparticles of Poly($\varepsilon$-caprolactone) /Poly(ethylene glycol)/Poly( $\varepsilon$-caprolactone) Triblock Copolymers

  • Ryu, Jae Gon;Jeong, Yeong Il;Kim, Yeong Hun;Kim, In Suk;Kim, Do Hun;Kim, Seong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.467-475
    • /
    • 2001
  • A triblock copolymer based on $poly(\varepsilon-caprolactone)$ (PCL) as the hydrophobic part and poly(ethylene glycol) (PEG) as the hydrophilic portion was synthesized by a ring-opening mechanism of ${\varepsilon}-caprolactone$ with PEG containing a hydroxyl group at bot h ends as an initiator. The synthesized block copolymers of PCL/PEG/PCL (CEC) were confirmed and characterized using various analysis equipment such as 1H NMR, DSC, FT-IR, and WAXD. Core-shell type nanoparticles of CEC triblock copolymers were prepared using a dialysis technique to estimate their potential as a colloidal drug carrier using a hydrophobic drug. From the results of particle size analysis and transmission electron microscopy, the particle size of CEC core-shell type nanoparticles was determined to be about 20-60 nm with a spherical shape. Since CEC block copolymer nanoparticles have a core-shell type micellar structure and small particle size similar to polymeric micelles, CEC block copolymer can self-associate at certain concentrations and the critical association concentration (CAC) was able to be determined by fluorescence probe techniques. The CAC values of the CEC block copolymers were dependent on the PCL block length. In addition, drug loading contents were dependent on the PCL block length: the larger the PCL block length, the higher the drug loading content. Drug release from CEC core-shell type nanoparticles showed an initial burst release for the first 12 hrs followed by pseudo-zero order release kinetics for 2 or 3 days. CEC-2 block copolymer core-shell type nanoparticles were degraded very slowly, suggesting that the drug release kinetics were governed by a diffusion mechanism rather than a degradation mechanism irrelevant to the CEC block copolymer composition.