• Title/Summary/Keyword: Polymeric material

Search Result 426, Processing Time 0.027 seconds

F2 Gel Matrix - a Novel Delivery System for Immune and Gene Vaccinations

  • Tuorkey, Muobarak J
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3061-3063
    • /
    • 2016
  • Exploiting the immune system to abolish cancer growth via vaccination is a promising strategy but that is limited by many clinical issues. For DNA vaccines, viral vectors as a delivery system mediate a strong immune response due to their protein structure, which could afflect the cellular uptake of the genetic vector or even induce cytotoxic immune responses against transfected cells. Recently, synthetic DNA delivery systems have been developed and recommended as much easier and simple approaches for DNA delivery compared with viral vectors. These are based on the attraction of the positively charged cationic transfection reagents to negatively charged DNA molecules, which augments the cellular DNA uptake. In fact, there are three major cellular barriers which hinder successful DNA delivery systems: low uptake across the plasma membrane; inadequate release of DNA molecules with limited stability; and lack of nuclear targeting. Recently, a polysaccharide polymer produced by microalgae has been synthesized in a form of polymeric fiber material poly-N-acetyl glucosamine (p-GlcNAc). Due its unique properties, the F2 gel matrix was suggested as an effective delivery system for immune and gene vaccinations.

Facile Fabrication Process for Graphene Nanoribbon Using Nano-Imprint Lithography(NIL) and Application of Graphene Pattern on Flexible Substrate by Transfer Printing of Silicon Membrane (나노임프린트 리소그래피 기술을 이용한 그래핀 나노리본 트랜지스터 제조 및 그래핀 전극을 활용한 실리콘 트랜지스터 응용)

  • Eom, Seong Un;Kang, Seok Hee;Hong, Suck Won
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.635-643
    • /
    • 2016
  • Graphene has shown exceptional properties for high performance devices due to its high carrier mobility. Of particular interest is the potential use of graphene nanoribbons as field-effect transistors. Herein, we introduce a facile approach to the fabrication of graphene nanoribbon (GNR) arrays with ~200 nm width using nanoimprint lithography (NIL), which is a simple and robust method for patterning with high fidelity over a large area. To realize a 2D material-based device, we integrated the graphene nanoribbon arrays in field effect transistors (GNR-FETs) using conventional lithography and metallization on highly-doped $Si/SiO_2$ substrate. Consequently, we observed an enhancement of the performance of the GNR-transistors compared to that of the micro-ribbon graphene transistors. Besides this, using a transfer printing process on a flexible polymeric substrate, we demonstrated graphene-silicon junction structures that use CVD grown graphene as flexible electrodes for Si based transistors.

The Flexible Characteristic of Reversible and Robust Nanohair Fastener

  • Park, Seung-Ho;Yoon, Young-Seok;Lee, Dong-Woo;Lee, Dong-Ik;You, Kyoung-Hwan;Pang, Chang-Hyun;Suh, Kahp-Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.432-432
    • /
    • 2011
  • Dry adhesion caused by Nanoscale contact comes up to important scientific issue. Herein, we introduce bendable nanohairy locking fastener system with high shear strength and mechanically flexible backing. The polymeric patches like velcro are composed of an array of straight nanohairs with 100 nm diameter and $1{\mu}m$ height. To fabricate high aspect vertical nanohairs, we used UV molding method with appropriately flexible and rigid polyurethane acrylate material on PET substrate. Two identical nanohairy patches are easily merged and locked each other induced by van der Waals force. Because nanohairs can be arrayed with high density ${\sim}4{\times}10^8/cm^2$, we can obtain high shear adhesion force on flat surface (~22 N/$cm^2$). Furthermore, we can obtian nanohairy locking system with maximum shear adhesion ~48 N/$cm^2$ of curved surface due to flexibility of PET substrate. We confirm the tendency that shear adhesion force increases, as radius of curvature increases.

  • PDF

Study of Characteristic of Up-hill Transport in Alkali Metal-ions Through a Carrier Membrane (캐리어 막에 의한 알카리 금속 이온의 업-힐 수송의 특성 연구)

  • Park, Keunduck;Yang, Wongkang
    • Analytical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.224-229
    • /
    • 1999
  • Recently, many studies for the supported liquid membrane (SLM) using a carrier have been actively reported. Polymeric cation exchange membrane was synthsized by dissolving monensin carrier of antibiotic material in organic solvent. Then the SLM was applied to the Nernst-Planck and Fick equations and membrane potential and membrane permeability were measured respectively. The results showed the high selectivity towards alkali metal ions and the SLM showed linear relationship with low concentration. However, linear relationship did not appear at high concentration. This is explained by means of the new theory of the stagnant layer and the slop of logarithm value was linear for the up-hill transport phenomena of membrane transport.

  • PDF

Fabrication and characterization of block copolymer (PCL/PCL-PEG) nanofibers binding with collagen by electrospun (콜라겐 코팅된 블록공중합(PCL/PCL-PEG) 나노섬유의 제조 및 특성분석)

  • Lee, Jin Woo;Yoon, Kuk Ro
    • Analytical Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.228-233
    • /
    • 2014
  • Electrospun polymeric nanofibers have been extensively studied for biomedical materials because of their unique structures and relatively easy fabrication with biocompatible polymers. The amount of surface exposed amine groups increases as the blend ratio of block copolymer increases. Cell attachments on the nanofibers change according to the ratio of the block copolymer ((Poly(e-caprolactone, PCL), Poly(e-caprolactone)-Poly (ethylen glycol-$NH_2$)) in the blend. We assume that the PEG and amine moiety plays a significant role in biocompatibility of nanofiber surfaces. Collagen was used as a grafting material on the composite nanofibers to enhance the cell adhesion because the collagen is a major constituent of connective tissue.

Controlling Pore Size of Electrospun Silk Fibroin Scaffold for Tissue Engineering (전기방사를 이용한 조직공학용 실크 피브로인 나노 섬유 지지체의 기공 크기 조절)

  • Cho, Se-Youn;Park, Hyun-Ho;Jin, Hyoung-Joon
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.651-655
    • /
    • 2012
  • Considerable effort has been directed toward the use of silk fibroin as a biotechnological material in biomedical applications on account of its excellent biodegradability, biocompatibility, and unique mechanical properties. For use in tissue engineering, it is very important to design and control the pore architecture of polymeric scaffolds, which provide the vital framework for seeded cells to organize into functioning tissue. In the present study, a silk fibroin scaffold with controlled interconnectivity and pore size was prepared using an electrospinning method with poly(ethylene oxide).

Novel fabricated multi layer pattering using novolak and epoxy resin polymer. (Novolak 계열과 Epoxy 계열의 고분자를 이용한 새로운 multi layer 패턴 형성 방법)

  • Kim, Han-Hyoung;Yang, Seung-Kook;Yoo, Han-Suk;Lee, Seung-Yong;O, Beom-Hoan;Lee, Seung-Gol;Lee, El-Hang;Park, Se-Geun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.549-550
    • /
    • 2006
  • It has become topic continuously at MEMS or semiconductor process to form three-dimensional multilayer structure. In this paper, we devised the new polymer pattern method that has multilayer structure. This is method that uses different kind of polymeric material. Specially, polymers used in this study that we propose became all pattern by photolithography, prevented that process increases. Here, polymer that we use used polymer of epoxy order called "SU-8" and polymer of novolak resin called "AZ-1518". The result, "SU-8" was formed pattern to 3.5um thickness, and "AZ-1518" about pattern 3um thickness. Also, It was been 6um thickness at same pattern area.

  • PDF

Effect of LiCoO2 Cathode Density and Thickness on Electrochemical Performance of Lithium-Ion Batteries

  • Choi, Jaecheol;Son, Bongki;Ryou, Myung-Hyun;Kim, Sang Hern;Ko, Jang Myoun;Lee, Yong Min
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • The consequences of electrode density and thickness for electrochemical performance of lithium-ion cells are investigated using 2032-type coin half cells. While the cathode composition is maintained by 90:5:5 (wt.%) with $LiCoO_2$ active material, Super-P electric conductor and polyvinylidene fluoride polymeric binder, its density and thickness are independently controlled to 20, 35, 50 um and 1.5, 2.0, 2.5, 3.0, 3.5 g $cm^{-3}$, respectively, which are based on commercial lithium-ion battery cathode system. As the cathode thickness is increased in all densities, the rate capability and cycle life of lithium-ion cells become significantly worse. On the other hand, even though the cathode density shows similar behavior, its effect is not as high as the thickness in our experimental range. This trend is also investigated by cross-sectional morphology, porosity and electric conductivity of cathodes with different densities and thicknesses. This work suggests that the electrode density and thickness should be chosen properly and mentioned in detail in any kinds of research works.

Designing Materials for Hard Tissue Replacement

  • Nath, Shekhar;Basu, Bikramjit
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.1-29
    • /
    • 2008
  • In last two decades, an impressive progress has been recorded in terms of developing new materials or refining existing material composition/microstructure in order to obtain better performance in biomedical applications. The success of such efforts clearly demands better understanding of various concepts, e.g. biocompatibility, host response, cell-biomaterial interaction. In this article, we review the fundamental understanding that is required with respect to biomaterials development, as well as various materials and their properties, which are relevant in applications, such as hard tissue replacement. A major emphasize has been placed to present various design aspects, in terms of materials processing, of ceramics and polymer based biocomposites, Among the bioceramic composites, the research results obtained with Hydroxyapatite (HAp)-based biomaterials with metallic (Ti) or ceramic (Mullite) reinforcements as well as $SiO_2-MgO-Al_2O_3-K_2O-B_2O_3-F$ glass ceramics and stabilized $ZrO_2$ based bioinert ceramics are summarized. The physical as well as tribological properties of Polyethylene (PE) based hybrid biocomposites are discussed to illustrate the concept on how can the physical/wear properties be enhanced along with biocompatibility due to combined addition of bioinert and bioactive ceramic to a bioinert polymeric matrix. The tribological and corrosion properties of some important orthopedic metallic alloys based on Ti or Co-Cr-Mo are also illustrated. At the close, the future perspective on orthopedic biomaterials development and some unresolved issues are presented.

A Trend of R&D in Enviromental Thermoplastic Elastomer (환경친화형 열가소성 탄성체 기술개발 동향)

  • Lee, Yong-Sang;Jeong, Jung-Chea;Park, Jong-Man
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.245-249
    • /
    • 2010
  • Much interest on the thermoplastic elastomers (TPEs) has recently been attracted in commercial fields as well as scientific and applied research. The TPEs have their own characteristic area especially in relation with block copolymers as well as many other polymeric materials, since they show interesting features displayed by the conventional vulcanized rubber, and at the same time, by the thermoplastics. In addition, they are characterized by a set of interesting properties inherent to block and graft copolymers, variety of blends and vulcanized materials. The importance of TPE as organic materials can be evaluated by the number of published reports (papers, patents, technical reports, etc). For the suitable introduction of the TPE, historic, scientific, technical and commercial considerations should be taken into account. This review article starts with a brief discussion on historical considerations, followed by a introduction of the main preparations and analytical techniques utilized in chemical, structural, and morphological studies. The properties, processing tools, the position among organic materials, and applications of TPEs are also briefly reviewed. Finally, the most probable trends of their future development are discussed in a short final remarks.