• Title/Summary/Keyword: Polymeric Interphase

Search Result 5, Processing Time 0.019 seconds

Development of Advanced Polymeric Binders for High Voltage LiNi0.5Mn1.5O4 cathodes in Lithium-ion batteries (고전압 LiNi0.5Mn1.5O4 양극 고성능 바인더 개발 연구)

  • Dae Hui Yun;Sunghun Choi
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.43-48
    • /
    • 2023
  • Spinel LiNi0.5Mn1.5O4 (LNMO) has been considered as one of most promising cathode material, because of its low-cost and competitive energy density. However, 4.7V vs. Li/Li+ of high operating potential facilitates electrolyte degradation on cathode-electrolyte interface during charge-discharge process. In particular, commercial polyvinylidene fluoride (PVDF) is not sutaible for LNMO cathode binder because its weak van der waals force induces thick and non-uniform coverage on the cathode surface. In this review, we study high performance binders for LNMO cathode, which forms uniform coating layer to prevent direct contact between electrolyte and LNMO particle as well as modifying high quality cathode electrolyte interphase, improved cell performace.

Fabrication of PP/Carbon Fiber Composites by Introducing Reactive Interphase and its Properties (반응성 고분자 계면상을 도입한 PP/탄소섬유 복합재료의 제조와 물성)

  • 김민영;김지홍;김원호;최영선;황병선
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.556-563
    • /
    • 2000
  • In general, the development of thermoplastic composites has been confronted with difficult problems such as the weak bonding strength between fibers and matrix. However, now, such problems are being surmounted by the development of resins, the improvement of processes, and introduction of interphase. Especially, the introduction of interphase between fiber and matrix can help a dissipation of the impact energy and provide a good adhesion between fibers and matrix. In this study, polymeric interphase was introduced by electrodeposition, modified polypropylene was added to improve the weak bonding strength between interphase and polypropylene matrix. By evaluation of interlaminar shear strength and impact strength of the composites, it was found that composites with introduced composites showed higher mechanical properties than those of composites without interphase. Reactive polymers which have either anhydride or free acid functional group were used as interphase materials, and these polymers also behave as charge carrier in aqueous solution during the electrodeposition process. Weight gain on the carbon fibers was evaluated by changing process parameters such as concentration of solution, current density, and electrodeposition time.

  • PDF

Characterization of Thickness and Thermoelastic Properties of Interphase in Polymer Nanocomposites using Multiscale Analysis (멀티스케일 해석을 통한 고분자 나노복합재의 계면 상 두께와 열탄성 물성 도출)

  • Choi, Joonmyung;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.577-582
    • /
    • 2016
  • In this study, a multiscale method for solving a thermoelasticity problem for interphase in the polymeric nanocomposites is developed. Molecular dynamics simulation and finite element analysis were numerically combined to describe the geometrical boundaries and the local mechanical response of the interfacial region where the polymer networks were highly interacted with the nanoparticle surface. Also, the micrmechanical thermoelasticity equations were applied to the obtained equivalent continuum unit to compute the growth of interphase thickness according to the size of nanoparticles, as well as the thermal phase transition behavior at a wide range of temperatures. Accordingly, the equivalent continuum model obtained from the multiscale analysis provides a meaningful description of the thermoelastic behavior of interphase as well as its nanoparticle size effect on thermoelasticity at both below and above the glass transition temperature.

Electrodeposition onto the Surface of Carbon Fiber and Its Application to Composites (II) - CFRC with MVEMA and EMA Interphase - (탄소섬유 표면에의 고분자 전착과 복합재료 물성 (II) - MVEMA 및 EMA 계면상을 갖는 탄소섬유 복합재료 -)

  • Kim, Minyoung;Kim, Jihong;Bae, Jongwoo;Kim, Wonho;Hwang, Byungsun;Choi, Youngsun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.336-342
    • /
    • 1999
  • Various surface treatment techniques can be applied onto the surface of carbon fibers to increase interlaminar shear strength (ILSS). In a commerciaI treatment, first, surface of carbon fiber was oxidized, after that, a sizing agent was coated to improve handleability and adhesion to the matrix. Carbon fiber reinforced composites (CFRC) which is made of these fibers show excellent ILSS but show low vaIues of impact strength In this study, reactive and ductile interphase was introduced between fiber and matrix to increase both the ILSS and impact strength. By using electric conductivity of carbon fibers, flexible polymers which have ionizable group, i.e., MVEMA and EMA, were coated onto the surface (oxidized) of carbon fiber by the technique of electrodeposition. ILSS and impact strength of composites were evaluated according to the surface treatments, i.e., commercial sizing treatment, interphase introduction, and without sizing treatment. Izod impact strength and ILSS of CFRC were simultaneously improved in thc thickness range of $0.08{\sim}0.12{\mu}m$ of MVEMA interphase. Water resistance of the composites was decreased by introducing MVEMA interphase.

  • PDF

The Roles of Electrolyte Additives on Low-temperature Performances of Graphite Negative Electrode (전해액 첨가제가 흑연 음극의 저온특성에 미치는 영향)

  • Park, Sang-Jin;Ryu, Ji-Heon;Oh, Seung-Mo
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • SEI (solid electrolyte interphase) layers are generated on a graphite negative electrode from three different electrolytes and low-temperature ($-30^{\circ}C$) charge/discharge performance of the graphite electrode is examined. The electrolytes are prepared by adding 2 wt% of vinylene carbonate (VC) and fluoroethylene carbonate (FEC) into a standard electrolyte solution. The charge-discharge capacity of graphite electrode shows the following decreasing order; FEC-added one>standard>VC-added one. The polarization during a constant-current charging shows the reverse order. These observations illustrate that the SEI film resistance and charge transfer resistance differ according to the used additives. This feature has been confirmed by analyzing the chemical composition and thickness of three SEI layers. The SEI layer generated from the standard electrolyte is composed of polymeric carbon-oxygen species and the decomposition products ($Li_xPF_yO_z$) of lithium salt. The VC-derived surface film shows the largest resistance value even if the salt decomposition is not severe due to the presence of dense film comprising C-O species. The FEC-derived SEI layer shows the lowest resistance value as the C-O species are less populated and salt decomposition is not serious. In short, the FEC-added electrolyte generates the SEI layer of the smallest resistance to give the best low-temperature performance for the graphite negative electrode.