• Title/Summary/Keyword: Polymeric Composite

Search Result 293, Processing Time 0.03 seconds

Nonlinear vibration analysis of carbon nanotube-reinforced composite beams resting on nonlinear viscoelastic foundation

  • M. Alimoradzadeh;S.D. Akbas
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.125-135
    • /
    • 2023
  • Nonlinear vibration analysis of composite beam reinforced by carbon nanotubes resting on the nonlinear viscoelastic foundation is investigated in this study. The material properties of the composite beam is considered as a polymeric matrix by reinforced carbon nanotubes according to different distributions. With using Hamilton's principle, the governing nonlinear partial differential equations are derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The nonlinear natural frequency and the nonlinear free response of the system is obtained. In addition, the effects of different patterns of reinforcement, linear and nonlinear damping coefficients of the viscoelastic foundation on the nonlinear vibration responses and phase trajectory of the carbon nanotube reinforced composite beam are investigated.

Separation of Hydrogen-Nitrogen Gas Mixture by PTMSP/PDMS-PEI Composite Membrane

  • Lee, Hyun-Kyung;Kang, Tae-Beom
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.148-151
    • /
    • 2004
  • The development of the gas separation processes using polymeric membranes has attracted a great deal of interest during the last two decades. Membrane in this application has to offer an excellent thermal stability, chemical/solvent resistance, and mechanical strength under operating conditions.(omitted)

  • PDF

Behavior of Fiber-Reinforced Smart Soft Composite Actuators According to Material Composition (섬유 강화 지능형 연성 복합재 구동기의 재료구성에 따른 거동특성 평가)

  • Han, Min-Woo;Kim, Hyung-Il;Song, Sung-Hyuk;Ahn, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.81-85
    • /
    • 2017
  • Fiber-reinforced polymer composites, which are made by combining a continuous fiber that acts as reinforcement and a homogeneous polymeric material that acts as a host, are engineering materials with high strength and stiffness and a lightweight structure. In this study, a shape memory alloy(SMA) reinforced composite actuator is presented. This actuator is used to generate large deformations in single lightweight structures and can be used in applications requiring a high degree of adaptability to various external conditions. The proposed actuator consists of numerous individual laminas of the glass-fiber fabric that are embedded in a polymeric matrix. To characterize its deformation behavior, the composition of the actuator was changed by changing the matrix material and the number of the glass-fiber fabric layers. In addition, current of various magnitudes were applied to each actuator to study the effect of the heating of SMA wires on applying current.

Dynamic load concentration caused by a break in a Lamina with viscoelastic matrix

  • Reza, Arash;Sedighi, Hamid M.;Soleimani, Mahdi
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1465-1478
    • /
    • 2015
  • The effect of cutting off fibers on transient load in a polymeric matrix composite lamina was studied in this paper. The behavior of fibers was considered to be linear elastic and the matrix behavior was considered to be linear viscoelastic. To model the viscoelastic behavior of matrix, a three parameter solid model was employed. To conduct this research, finite difference method was used. The governing equations were obtained using Shear-lag theory and were solved using boundary and initial conditions before and after the development of break. Using finite difference method, the governing integro-differential equations were developed and normal stress in the fibers is obtained. Particular attention is paid the dynamic overshoot resulting when the fibers are suddenly broken. Results show that considering viscoelastic properties of matrix causes a decrease in dynamic load concentration factor and an increase in static load concentration factor. Also with increases the number of broken fibers, trend of increasing load concentration factor decreases gradually. Furthermore, the overshoot of load in fibers adjacent to the break in a polymeric matrix with high transient time is lower than a matrix with lower transient time, but the load concentration factor in the matrix with high transient time is lower.

A Composite of Metal and Polymer Films: Thin Nickel Film Coated on a Polypropylene Film after Atmospheric Plasma Induced Surface Modification

  • Song, Ho-Shik;Choi, Jin-Moon;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.110-114
    • /
    • 2011
  • Polymeric films of high chemical stability and mechanical strength covered with a thin metallic film have been extensively used in various fields as electric and electronic materials. In this study, we have chosen polypropylene (PP) as the polymer due to its outstanding chemical resistance and good creep resistance. We coated thin nickel film on PP films by the electroless plating process. The surfaces of PP films were pre-treated and modified to increase the adhesion strength of metal layer on PP films, prior to the plating process, by an environment-friendly process with atmospheric plasma generated using dielectric barrier discharges in air. The surface morphologies of the PP films were observed before and after the surface modification process using a scanning electron microscope (SEM). The static contact angles were measured with deionized water droplets. The cross-sectional images of the PP films coated with thin metal film were taken with SEM to see the combined state between metallic and PP films. The adhesion strength of the metallic thin films on the PP films was confirmed by the thermal shock test and the cross-cutting and peel test. In conclusion, we made a composite material of metallic and polymeric films of high adhesion strength.

Characterization of Dicyclopentadiene and 5-Ethylidene-2-norbornene as Self-healing Agents for Polymer Composite and Its Microcapsules

  • Lee, Jong-Keun;Hong, Sun-Ji;Xing Liu;Yoon, Sung-Ho
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.478-483
    • /
    • 2004
  • Two different diene monomers [dicyclopentadiene (DCPD) and 5-ethylidene-2-norbornene (ENB)] as self-healing agents for polymeric composites were microencapsuled by in situ polymerization of urea and formaldehyde. We obtained plots of the storage modulus (G') and tan $\delta$ as a function of cure time by using dynamic mechanical analysis to investigate the cure behavior of the unreacted self-healing agent mixture in the presence of a catalyst. Glass transition temperatures (T$\_$g/) and exothermic reactions of samples cured for 5 and 120 min in the presence of different amounts of the catalyst were analyzed by differential scanning calorimetry. Of the two dienes, ENB may have advantages as a self-healing agent because, when cured under same conditions as DCPD, it reacts much faster in the presence of a much lower amount of catalyst, has no melting point, and produces a resin that has a higher value of T$\_$g/. Microcapsules containing the healing agent were successfully formed from both of the diene monomers and were characterized by thermogravimetric analysis. Optical microscopy and a particle size analyzer were employed to observe the morphology and size distribution, respectively, of the microcapsules. The microcapsules exhibited similar thermal properties as well as particle shapes and sizes.

Measurement of the Fiber Orientation on Weld-Line Parts for Injection Molding of Fiber Reinforced Polymeric Composites (섬유강화 고분자 복합재의 사출성형에 있어서 웰드라인부의 섬유배향측정)

  • Kim, H.;Kang, M.G.;Choi, Y.S.;Lee, D.G.;Han, G.Y.;Kim, E.G.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.265-270
    • /
    • 2000
  • Injection molding is a very important industrial process for the manufacturing of plastics objects. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation· orientation and injection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experimentally. Using the image processing method, the fiber orientation distribution of weld-line parts in injection-molded products is assessed. And the effects of fiber content and injection molding conditions on the fiber orientation functions are also discussed

  • PDF

Characterization of Microcapsules for Self-Healing in Polymeric Composites

  • Lee Jong Keun;Hong Soon Ji;Liu Xing;Park Hee Won;Yoon Sung Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.190-193
    • /
    • 2004
  • Two different diene monomers [dicyclopentadiene (DCPD) and 5-ethylidene-2-norbomene (ENB)] as self­healing agent for polymeric composites were microencapsuled by in-situ polymerization of urea and formaldehyde. The healing agents were investigated by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Exothermic reaction and glass transition temperature from DSC and storage modulus (G') and tan $\delta$ from DMA curves were analyzed for the samples cured for 5 min and 24 h in the presence of different amounts of catalyst. Micorcapsules were successfully formed for both diene monomers. Microcapsules containing the healing agent were manufactured and its thermal properties were characterized by thermo gravimetric analysis (TGA). Optical microscope (OM) and particle size analyzer (PSA) were employed to observe morphology and size distribution of microcapsules, respectively. Comparison of the two self-healing agents and their microcapsules with the two was made in this study.

  • PDF