• Title/Summary/Keyword: Polymeric Composite

Search Result 293, Processing Time 0.024 seconds

3-Dimensional Deformation Analysis for Compression Molding of Polymeric Composites with Random/Unidirectional Fiber-Reinforced Laminates (무배향/일방향 섬유강화 적층매트를 갖는 플라스틱 복합재의 3차원 압축변형 해석)

  • 채경철;조선형;김이곤
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.23-30
    • /
    • 1999
  • Fiber reinforced composite materials are widely used in automotive industry to produce parts that are large, thin, lightweight, strong and stiff. It is very important to know a charge shape in order to have good products in the compression molding. In particular, the product such as a bumper beam is composed of the random and unidirectional fiber mats. The characteristics of flow fronts such as a bulging phenomenon for random mat and unidirectional fiber mat and slip parameters are studied numerically. And the effects of viscosity ratio and stack type on mold filling parameters are also discussed.

  • PDF

Development of Carbon Nanotubes and Polymer Composites Therefrom

  • Jain, P.K.;Mahajan, Y.R.;Sundararajan, G.;Okotrub, A.V.;Yudanov, N.F.;Romanenko, A.I.
    • Carbon letters
    • /
    • v.3 no.3
    • /
    • pp.142-145
    • /
    • 2002
  • Multiwall carbon nanotubes (MWNT) were produced using the arc-discharge graphite evaporation technique. Composite films were developed using MWNT dispersed in polystirol polymer. In the present work, various properties of the polymeric thin film containing carbon nanotubes were investigated by optical absorption, electrical resistivity and the same have been discussed.

  • PDF

Interfacial Properties and Microfailure Degradation Mechanisms of Bioabsorbable Composites for Implant Materials using Micromechanical Technique and Acoustic Emission (Micromechanical시험법과 Acoustic Emission을 이용한 Implant용 생흡수성 복합재료의 계면물성과 미세파괴 분해메카니즘)

  • Kim, Dae-Sik;Park, Joung-Man;Kim, Sung-Ryong
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.263-267
    • /
    • 2001
  • The changes of interfacial properties and microfailure degradation mechanisms of bioabsorbable composites with hydrolysis were investigated using micromechanical test and acoustic emission (AE). As hydrolysis time increased, the tensile strength, the modulus and the elongation of PEA and bioactive glass fibers decreased, whereas those of chitosan fiber changed little. Interfacial shear strength (IFSS) of bioactive glass fiber/poly-L-lactide (PLLA) composite was significantly higher than that two other systems. The decreasing rate of IFSS was the fastest in bioactive glass fiber/PLLA composite, whereas that of chitosan fiber/PLLA composite was the slowest. With increasing hydrolysis time, distribution of AE amplitude was narrow, and AE energy decreased gradually.

  • PDF

Interfacial Properties of Electrodeposited Carbon Fiber/Epoxy Composites using Electro-Micromechanical Techniques and Nondestructive Evaluations

  • Park, Joung-Man;Lee, Sang-Il
    • Macromolecular Research
    • /
    • v.9 no.1
    • /
    • pp.20-29
    • /
    • 2001
  • Interfacial adhesion and nondestructive behavior of electrodeposited (ED) carbon fiber rein-forced composites were evaluated using electro-micromechanical techniques and acoustic emission (AE). The interfacial shear strength (IFSS) of the ED carbon fiber/epoxy composites was higher than that of the untreated fiber. This might be expected because of the possibility of chemical or hydrogen bonding in an electrically adsorbed polymeric interlayer. The logarithmic electrical resistivity of the untreated single-carbon fiber composite increased suddenly to infinity when fiber fracture occurred, whereas that of the ED composite increased relatively gradually to infinity. This behavior may arise from the retarded fracture time due to enhanced IFSS. In single- and ten-carbon fiber composites, the number of AE signals coming from interlayer failure of the ED carbon fiber composite was much larger than that of the untreated composite. As the number of the each first fiber fractures increased in the ten-carbon fiber composite, the electrical resistivity increased stepwise, and the slope of the logarithmic electrical resistance increased.

  • PDF

Biodegradable Starch-Based Resin Reinforced with Continuous Mineral Fibres-Processing, Characterisation and Mechanical Properties

  • Wittek, Thomas;Tanimoto, Toshio
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.167-185
    • /
    • 2009
  • Environmental problems caused by extensive use of polymeric materials arise mainly due to lack of landfill space and depletion of finite natural resources of fossil raw materials like petroleum or natural gas. The substitution of synthetic petroleum-based resins with natural biodegradable resins appears to be one appropriate measure to remedy the above-mentioned situation. This study presents the development of a composite that uses environmentally degradable starch-based resin as matrix and natural mineral basalt fibres as reinforcement, and investigates the fibre's and the composite's mechanical properties. The tensile strength of single basalt fibres was verified by means of single fibre tensile tests and statistically investigated by means of a Weibull analysis. Prepreg sheets were manufactured by means of a modified doctor blade system and hot power press. The sheets were used to manufacture specimens with fibre volume contents ranging from 33% to 61%. Specimens were tested for tensile strength, flexural strength and interlaminar shear strength. Composites manufactured during this study exhibited tensile and flexural strength of up to 517 MPa and 157 MPa, respectively.

Buckling of T-Shaped Composite Columns (T형 복합재료 기둥의 좌굴)

  • Lee Seungsik;Back Sung-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.57-62
    • /
    • 2006
  • Composite thin-walled members for civil engineering application are mainly produced by pultrusion technique, and they are generally made of a polymeric resin system reinforced by E-glass fibers due to economical reason. This material combination results in low elastic moduli of the composite materials and makes the design of composite members to be governed by stability limit state. Therefore the buckling behavior of composite thin-walled members was experimentally investigated in the present study. Axial compression was applied on each specimens by a hydraulic ram and knife edge fixtures were placed at both ends to simulate simple boundary condition. Axial compression, lateral displacements and twisting at the mid-height of each specimen were measured by a set of transducers during buckling test. The experimental buckling loads were compared with analytical results obtained through isotropic formulas. In the calculation of analytical results, elastic properties such as Young's modulus(E) and shear modulus(G) were replaced with EL and GLT obtained from coupon tests, respectively.

Aging Characteristics of Composite Materials in Carbody of Tilting Train using Accelerated Aging Test (가속노화시험을 이용한 틸팅차량 차체 복합재의 노화특성)

  • Yoon Sung-Ho;Kim Yong-Goo;Nam Jung-pyo;Shin Kwang-Bok;Koo Dong-Hoe
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.333-338
    • /
    • 2003
  • Polymeric composite structures used in ground transportation applications such as the carbody of tilting train may be exposed to a ground environmental conditions during long-term missions. In this study, the degradation of mechanical and physical properties of graphite/epoxy composite and glass fabric/phenol composite under ground environmental conditions was investigated. Accelerated environmental conditions of ultraviolet radiation, temperature, and moisture were considered. Several types of specimens were used to investigate the effects of environmental conditions on mechanical properties of the composites. Also, storage shear modulus, loss shear modulus, and tan 8 were measured as a function of exposure times through a dynamic mechanical analyzer. Finally, composite surfaces exposed to environmental conditions were examined using a scanning electron microscope.

  • PDF

Evaluation Technology of Electrical and reliableility Characteristics for Outdoor Polymer Insulator Materials (폴리머 절연물 소재의 전기적 밀 복합열화 특성평가 기술)

  • Ahn, Myeong-Sang;Park, Hoy-Yul;Na, Moon-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1343-1344
    • /
    • 2006
  • There have been numerous accelerated aging laboratory tests for evaluating suitability of polymeric materials and devices. Aging test for materials and its full scale device has been conducted. Service experience plays a key role in the utility section of composite insulators. A meaningful and reliable accelerated aging test is needed for evaluating composite insulator. During the service these insulators are subjected to aging stress such as humidity, pollution, and electrical field, and erosion and tracking of the weathershed occurs. This paper presents the criteria of reliability evaluation and evaluation facilities for 22.9 kV suspension composite insulator. We adopt the criteria of reliability evaluation consist of two test methods. One is CEA tracking wheel test for examining the tracking and erosion performance of composite insulator. The other is multi-stress aging test for examining effects of environmental factors such as UV, temperature, humidity, etc on composite insulator.

  • PDF

Preparation and Properties of Polymer PTC Composites for Process Safety (공정안전용 Polymer PTC 소재의 제조 및 특성)

  • 강영구;조명호
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.101-108
    • /
    • 2003
  • Polymeric positive temperature coefficient(PTC) composites have been prepared by incorporating carbon black(CB) into high density polyethylene(HDPE), polyphenylene sulfide(PPS) and polybutylene terephthalate(PBT) matrices. A PTC effect was observed in the composite, caused by the large thermal expansion due to He consecutive melting of HDPE, PPS and PBT crystallites. This theory is based upon the premise that the PTC phenomenon is due to a critical separation distance between carbon particles in the polymer matrix at the higher temperature. The influence of PTC characteristics of the PPS/CB composite can be explained by DSC result. HDPE, one of prepared composition, exhibit the higher performance PTC behavior that decreaseing of negative temperature coefficient(NTC) effect and improved reproducibility by chemically crosslinking. Also, PBT/CB and PPS/CB composites exhibit the higher PTC peack temperature than HDPE/CB PTC composite, individually $200^{\circ}C$ and $230^{\circ}C$. These PTC composite put to good use in a number of safety application, such as self$.$controlled heater, over-current protectors, auto resettable switch, high temperature proctection sensor, etc.

Thermal nonlinear dynamic and stability of carbon nanotube-reinforced composite beams

  • M. Alimoradzadeh;S.D. Akbas
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.637-647
    • /
    • 2023
  • Nonlinear free vibration and stability responses of a carbon nanotube reinforced composite beam under temperature rising are investigated in this paper. The material of the beam is considered as a polymeric matrix by reinforced the single-walled carbon nanotubes according to different distributions with temperature-dependent physical properties. With using the Hamilton's principle, the governing nonlinear partial differential equation is derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The critical buckling temperatures, the nonlinear natural frequencies and the nonlinear free response of the system is obtained. The effect of different patterns of reinforcement on the critical buckling temperature, nonlinear natural frequency, nonlinear free response and phase plane trajectory of the carbon nanotube reinforced composite beam investigated with temperature-dependent physical property.