• Title/Summary/Keyword: Polymeric

Search Result 2,163, Processing Time 0.027 seconds

Preparation of Alumina by the Sol-Gel Process(I) - Characteristics of Polymeric Alumina Sol (졸겔법에 의한 알루미나의 제조(I) - 중합 알루미나 졸의 특성)

  • 이해욱;김구대;정형진;김창은
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.60-66
    • /
    • 1991
  • The polymeric alumina sol was prepared by partial hydrolysis of aluminum sec-butoxide reacted with acetylacetone and its characteristics was investigated. The effects of alcohol solvent, acetylacetone, and acid concentration to the sol were investigated. FT-IR and Al27-MASNMR were used to study hydrolysis and polymerization reaction of aluminum complex. Synthesized sol showed the characteristics of polymeric alumina sol. To make a clear polymeric alumina sol, the optimum contents of acetylacetone, H2O and alcohol solvent were 0.4-0.6 mole, 0.25-1.25 mole, 3-5 mole per one mole alkoxide respectively. As a result of the Al27-MASNMR analysis, it was noted that hexa-penta-coordinated Al were main structure.

  • PDF

Analysis of Electric Field Distribution of High Voltage Polymeric Bushing with Structure (초고압 폴리머 부싱의 구조에 따른 전계분포 해석)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.489-490
    • /
    • 2008
  • This paper describes the analysis of electric field distribution of high voltage polymeric bushing with structure. The high voltage bushing consists of FRP tube and housing made of LSR. The field control can be achieved by means of the design of such internal field shaper and top corona ring as grading electrodes. In accordance, the optimized design uses both internal and external elements for electric stress grading at critical parts of the bushing. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymeric bushing.

  • PDF

Effect of Dexamethasone Preincubation on Polymer-Mediated Gene Delivery

  • Choi, Joon-Sig;Lee, Min-Hyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1209-1213
    • /
    • 2005
  • Nuclear membrane is one of the main barriers in intracellular delivery of genetic materials. The previous report showed that glucocorticoid receptor dilated the nuclear pore to 60 nm in the presence of a ligand. It was also suggested that the transport of genetic material to nucleus might be facilitated by glucocorticoid. In this study, the effect of glucocorticoid preincubation in the polymeric gene delivery was investigated. The cells were preincubated with dexamethasone, a potent glucocorticoid, and transfection assays were performed with polyethylenimine (PEI) and polyamidoamine (PAMAM) dendrimer. As a result, the transfection efficiency of PEI or PAMAM to the cells in the presence of dexamethasone was enhanced, compared to the cells without dexamethasone. This effect was not observed in the cells preincubated with cholesterol. The polymer/DNA complex was stable in the presence of dexamethasone. In addition, the cytotoxicities of the polymeric carriers to the cells were observed in the presence of dexamethasone. In conclusion, dexamethasone enhances the transfection efficiency of polymeric carriers and may be useful in the development of polymeric gene carriers.

Biodegradable polymeric drug delivery systems

  • Jeong, Seo-Young;Kim, Sung-Wan
    • Archives of Pharmacal Research
    • /
    • v.9 no.2
    • /
    • pp.63-73
    • /
    • 1986
  • The use of biodegradable polymetric materials as drug carriers is a relatively new dimension in polymeric drug delivery systems. A number of biodegradable or bioerodible polymers, such as poly(lactic/glycolic acid) copolymer, poly($\alpha$-amino acid), polyanhydride, and poly (ortho ester) are currently being investigated for this purpose. These polymers are useful for matrix and reservoir-type delivery devices. In addition, when chemical functional groups are introduced to the biodegradable polymer backdone, such as poly (N-(2-hydroxypropyl) methacrylamide), the therapeutic agent can be covalently bound directly or via spacer to the backbone polymer. These polymer/drug conjugates represent another new dimension in biodegradable polymeric drug delivery systems. In addition, examples of biodegradable polymeric durg delivery systems currently being investigated will be discussed for the purpose of demonstrarting the potential importance of this new field.

  • PDF

Thermal Aging Predictions of Polymeric Materials from Arrhenius Plot Using TGA

  • Sim, Dae-Seop;Park, Seong-Gyun;Lee, Cheol-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.10
    • /
    • pp.473-478
    • /
    • 2002
  • Accelerated thermal aging conditions of polymeric materials were studied by Kissinger equation with TGA analysis. The activation energy was obtained from the slope of straight line of each specimen at the different TGA heating rate. Estimating activation energy from Kissinger equation was acquired, and the resulting calculation showed that 3.59, 3.0, 3.86, 3.73 for the PEEK, polyimide, polysulfone and Viton, respectively. The studied polymeric specimens are used for electrical penetration assembly in nuclear power plant. Accelerated aging time and temperature were also determined corresponding to actual service temperature and 41 years.

Fabrication of Nano-sized Titanate Powder via a Polymeric Steric Entrapment Route and Planetary Milling Process

  • Lee, Sang-Jin;Lee, Chung-Hyo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.336-340
    • /
    • 2002
  • Pure and nano-sized $TiO_2$ and $CaTiO_3$ powders were fabricated by a polymeric steric entrapment route and planetary milling process. An ethylene glycol was used as a polymeric carrier for the preparation of organic-inorganic precursors. Titanium isopropoxide and calcium nitrate were dissolved in liquid-type ethylene glycol without any precipitation. At the optimum amount of the polymer, the metal cations were dispersed in solution and a homogeneous polymeric network was formed. The dried precursor ceramic gels were turned to porous powders through calcination process. The porous powders were crystallized at low temperatures and the crystalline powders were planetary milled to nano size.

Analysis of Polymeric Insulators Exposed to In-service Conditions (실 포설 환경에 노출된 송전용 고분자애자의 평가)

  • Lee, Sang-Jin;Youn, Bok-Hee;Bai, Kyoung-Moo;Jeon, Seung-Ik
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.248-250
    • /
    • 2004
  • We have investigated the surface state of 154kV polymeric insulators exposed to in-service conditions for about five years. In order to evaluate surface aging of silicone rubber exposed to real field environments, we used various analytic methods such as contact angle, ATR-FTIR, SEM-EDS. Although contaminants were accumulated on weathershed surface, polymeric insulator has retained its intrinsic surface hydrophocity. In addition, ATR-FTIR confirmed the diffusion layer of a low molecular weight silicone fluid on surface layer and no surface cracking and chalking were Indicated by SEM. Polymeric insulators have still retained their improved pollution performance over porcelain insulators. That will lead to very low frequency of flashovers throughout their useful life, often under contaminated conditions.

  • PDF

Study of Transport Phenomena of Large Ionic - Molecules Inside Polymeric Gel (고분자젤 내에서 분자체 거동현상 연구)

  • Park, Young-G.;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • Theoretical model has been studied for the transport phenomena of molecules in the system where an electric potential is applied to the system in the axial direction. The effect of electrophoretic convection in the polymeric media is significantly contributed to separate large ionic-molecules because the conformation of large ionic-molecule quickly orients in the field direction. The dependence of the transport in the polymeric media upon field intensity and molecular size aids in understanding the transport of large ionic-molecule in the system, since the convective velocity of large ionic-molecule is accelerated inside a porous material. The transport distance of individual large ionic-molecule can be predicted using the reptation theories.

Hydrophobic and Ionic Interactions in the Ester Hydrolysis by Imidazole-Containing Polymers

  • Cho Iwhan;Shin Jae-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.1
    • /
    • pp.34-36
    • /
    • 1982
  • N-Methacryloyl-L-histidine and N-methacryloyl-L-histidine methyl ester were synthesized and polymerized to obtain polymeric catalysts with different functions. In the presence of each of these polymers the solvolytic reactions of p-nitrophenyl acetate (PNPA), 3-nitro-4-acetoxybenzoic acid(NABA), 3-acetoxy-N-trimethylanilinium iodide(ANTI) and 3-nitro-4-decanoyloxybenzoic acid(NDBA) were performed in 20% aqueous ethanol. For the purpose of comparison the low molecular weight analogs(LMWA's), L-histidine, L-histidine methyl ester and N-acetyl-L-histidine were also subjected to catalyze the solvolyses of above substrates. In the solvolysis of PNPA the polymeric catalysts exhibited lower activities than the LMWA's. However the ionic substrates, NABA and ANTI were solvolyzed at anomalous rate by polymeric catalyst, indicating that electrostatic effects are operative in the catalysis by polymers. Furthermore in the solvolysis of hydrophobic monomer NDBA, polymeric catalysts exhibited highly enhanced activities compared with the LMWA's implying that hydrophobic interaction can be the most important contribution to the high catalytic activity of imidazole-containing polymers.

Buckling analysis of a sandwich plate with polymeric core integrated with piezo-electro-magnetic layers reinforced by graphene platelets

  • Pooya, Nikbakhsh;Mehdi, Mohammadimehr
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.331-349
    • /
    • 2022
  • In the present work, we proposed an analytical study on buckling behavior of a sandwich plate with polymeric core integrated with piezo-electro-magnetic layers such as BaTiO3 and CoFe2O4 reinforced by graphene platelets (GPLs). The Halpin-Tsai micromechanics model is used to describe the properties of the polymeric core. The governing equations of equilibrium are obtained from first-order shear deformation theory (FSDT) and the Navier's method is employed to solve the equations. The results show the effect of different parameters such as thickness, length, weight fraction of GPLs, and also effect of electric and magnetic field on critical buckling load. The result of this study can be obtained in the aerospace industry and also in the design of sensors and actuators.