• Title/Summary/Keyword: Polymer-matrix composites

Search Result 472, Processing Time 0.028 seconds

A Study on the Stress Analysis of Discontinuous Fiber Reinforced Polymer Matrix Composites (불연속 섬유강화 고분자 복합재료의 응력해석에 관한 연구)

  • Kim, H.G.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.101-107
    • /
    • 2008
  • A composite mechanics for discontinuous fiber reinforced polymer matrix composites(PMC) is analysed in order to predict fiber axial stresses. In continuum approach. frictional slip which usually takes place between fibers and polymers is accounted to derive PMC equations. The interfacial friction stress is treated by the product of the coefficient of friction and the compressive stress norma1 to the fiber/matrix interface. The residual stress and the Poisson's contraction implemented by the rule of mixture(ROM) are considered for the compressive stress normal to the fiber/matrix interface. In addition. the effects of fiber aspect ratio and fiber volume fraction on fiber axial stresses are evaluated using the derived equations. Results are illustrated numerically using the present equations with reasonable materials data. It is found that the fiber axial stress in the center region shows no great discrepancy for different fiber aspect ratios and fiber volume fractions while some discrepancies are shown in the fiber end region.

Prediction of Mechanical Properties and Behavior of Polymer Matrix Composites Based on Machine Learning (기계학습에 기반한 고분자 복합수지의 기계적 물성 거동 예측)

  • Lee, Nagyeong;Shin, Yongbeom;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.64-71
    • /
    • 2021
  • Research on polymer matrix composites with excellent molding processability and mechanical properties in the automotive field including hydrogen fuel cell electric vehicles is expanding to Computer-Aided Engineering (CAE) to support the design of materials with specific mechanical properties. CAE automation requires the prediction of the mechanical properties and behavior of materials. Unlike single materials, the mechanical properties prediction of polymer matrix composites is difficult to explain with formulas because the mechanical behavior is complicated to be explained only by the relationship between the matrix and the filler. In this study, the stress-strain curve according to the composition of polymer matrix composites, which was difficult to predict due to its sensitivity to large plastic deformation and composition, was predicted based on machine learning of the test data. The developed model finds a complex correlation between matrix and filler types and compositions, and predicts the total stress-strain curve meaningfully even in the absence of learned test data. It is expected that the material design AI system can be completed in the future based on the developed model that predicts the mechanical properties of polymer matrix composites even for the combination and composition that have not been learned.

A Poling Study on a Piezoceramic/Polymer 0-3 Composites for Hydrophone Applications (Hydrophone 응용을 위한 Piezoceramic/Polymer 0-3 Composite의 분극 개선)

  • Lee, S.H.;Cho, H.C.;SaGong, G.;Seul, S.D.;Koo, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.349-352
    • /
    • 1989
  • Poling piezoelectric ceramic-polymer composites with 0-3connectivity is difficult because of the high dielectric constant of most of the ferroelectric filler materials, and the high resistivity of the polymer matrix. To aid in poling this type of composite, conductivity of the polymer phase can be controlled by adding small amount of a semiconductor phase such as germanium, carbon or silicon. In this study, flexible piezoelectric composites of $PbTiO_3$ powder and Eccogel polymer were developed using small amounts of a semiconducting phase. These composites were poled rapidly at low voltages, resulting in properties superior to composites prepared without a conductive phase. The effect of addition of various conductive phase with different volume percentage on the dielectric and piezoelectric properties of the composite are discussed here.

  • PDF

Thermotropic Liquid Crystal Polymer Reinforced Poly(butylene terephthalate) Composites to Improve Heat Distortion Temperature and Mechanical Properties

  • Kim, Jun-Young;Kang, Seong-Wook;Kim, Seong-Hun
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.358-366
    • /
    • 2006
  • Thermotropic liquid crystal polymer (TLCP)-reinforced poly(butylene terephthalate) (PBT) composites were prepared by melt processing. The improvement in the mechanical properties and the processability of the PBT/TLCP composites was attributed to the reinforcing effect by TLCP phase and its well distribution in the PBT matrix. X-ray diffraction results demonstrated that a slow cooling process leads to the thicker lamellar structures and the formation of more regular crystallites in the composites. The incorporation of TLCP improves not only the tensile strength and flexural modulus but also the heat distortion temperature (HDT) of the PBT/TLCP composites. The HDT values of the composites were dependent on TLCP content. The improvement in the HDT values of the PBT/TLCP composites may be explained in terms with the increased flexural modulus, the development of more regular crystalline structures, and the enhancement of the ability of the composites to sustain the storage modulus by TLCP phase. In addition, the simple additivity rule makes it possible to predict the HDT values of the PBT/TLCP composites.

Effect of Formaldehyde on the Water Resistance of MDF Cement Composites

  • Nho, Jun-Seok;Park, Choon-Keun;Park, Sang-Heul
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.278-283
    • /
    • 1999
  • Formaldehyde has widely been used for the cross-linking of polyvinyl alcohol polyvinyl alcohol polymer. The effects of formaldehyde on the water resistance of MDF cement composites were investigated as a function of types of catalyst, base or acid, and the amount of formaldehyde. The acetalization, reaction of OH group of PVA with aldehyde, was ended incompletely under base atmosphere. However, by addition of citric acid, the cross-linking of PVA polymer could be acheved through acetalization of PVA and formaldehyde. The effects of these different patterne according to the types of catalyst on the water resistance of MDF cement were studied by the preparation of PVA films and MDF composites. Thanks to the cross-linking reaction of PVA polymer chains by formaldehyde, the modified PVA films and MDF composites showed a good water-resistant propety. The modified MDF cement composite to which 3 wt% formaldehyde and 1 wt% cirtic acid were added showed 80% of initial flexural strength and good interfacial state between cement grain and polymer matrix. However, 4 wt% formaldehyde deteriorted the processing conditions, microstructures and eventually the flexural strength, causing sharp increase in the viscosity of sample dough during the mixing process. To study the relatins of flexural strength and interface of cement grain and polymer matrix, SEM and MIP measurement were performed.

  • PDF

Mode 1 Fracture Toughness Test of CNT/Epoxy Composites with Different CNT Content (CNT 함량에 따른 CNT/Epoxy 복합재료 제작 및 모드 1 파괴 인성 평가)

  • KWON, DONG-JUN;YOO, HYEONGMIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.86-91
    • /
    • 2021
  • In order to save the energy in vehicles using renewable energy, it is necessary to reduce the weight of parts with polymer matrix composites. Carbon nanotube (CNT) is the nano-scale reinforcement used to increase the interlaminar strength of fiber reinforced composites or enhance the fracture toughness of polymer. However, since the degree of improvement in mechanical properties varies according to the various experimental conditions such as shape of reinforcement, types of matrix and dispersion of reinforcement, research to find the optimal conditions is essentially needed. In this study, CNT/epoxy composites with different CNT concentration were fabricated under the same conditions, and the optimal CNT content (2 wt%) was found through Mode 1 fracture toughness test. Furthermore, through optical microscopy, it was confirmed that the fracture toughness was rather decreased due to the CNT aggregation when the CNT content exceeded 2 wt%.

The Effect of Pressure on the Properties of Carbon/Carbon Composites during the Carbonization Process

  • Joo, Hyeok-Jong;Oh, In-Hwan
    • Carbon letters
    • /
    • v.3 no.2
    • /
    • pp.85-92
    • /
    • 2002
  • 4D carbon fiber preforms were manufactured by weaving method and their carbon fiber volume fractions were 50% and 60%. In order to form carbon matrix on the preform, coal tar pitch was used for matrix precursor and high density carbon/carbon composites were obtained by high densification process. In this process, manufacture of high density composites was more effective according to pressure increasement. When densificating the preform of 60% fiber volume fraction with 900 bar, density of the composites reached at 1.90 $g/cm^3$ after three times processing. Degree of pressure in the densification process controls macro pore but it can not affect micro pore. During the carbonization process, micro pore of the preform were filled fully by once or twice densification processing. But micro pore were not filled easily in the repeating process. Therefore, over three times densification processing is the filling micro pore.

  • PDF

Preparation and characteristics of PP/CF/MWCNT nanocomposites (PP/CF/ MWCNT 나노복합체의 제조 및 특성평가)

  • Kim, Seung-Beom;Nam, Byeong-Uk;Lee, Kyu-Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.107-111
    • /
    • 2011
  • Polypropylene(PP)/carbon fiber(CF)/multi-walled carbon nanotube(MWCNT) nanocomposites along with various CF and MWCNT contents were prepared in a Twin screw extruder. Electrical, mechanical property and morphology were investigated with a variation of CF and MWCNT contents. From the surface resistance of PP/CF/MWCNT composites, MWCNT can increase the conductivity of composites compared with PP/CF composites without MWCNT. It is suggested that MWCNT and CF can make the conductive network in the polymer matrix. Flexural modulus and Izod impact strength of the PP/CF/MWCNT composites were improved with the increase of CF contents. Morphology showed that length of CF in polymer matrix was shortened by torque during melt mixing with MWCNT. As a result of this phenomenon, the impact strength of composites was somewhat decreased.

Monitoring Failure Behaviour of Pultruded CFRP Composites by Electrical Resistance Measurement

  • Mao, Yaqin;Yu, Yunhua;Wu, Dezhen;Yang, Xiaoping
    • Carbon letters
    • /
    • v.5 no.1
    • /
    • pp.18-22
    • /
    • 2004
  • The failure behaviours of unidirectional pultruded carbon fiber reinforced polymer (CFRP) composites were monitored by the electrical resistance measurement during tensile loading, three-point-bending, interlaminar shear loading. The tensile failure behaviour of carbon fiber tows was also investigated by the electrical resistance measurement. Infrared thermography non-destructive evaluation was performed in real time during tensile test of CFRP composites to validate the change of microdamage in the materials. Experiment results demonstrated that the CFRP composites and carbon fiber tows were damaged by different damage mechinsms during tensile loading, for the CFRP composites, mainly being in the forms of matrix damage and the debonding between matrix and fibers, while for the carbon fiber tows, mainly being in the forms of fiber fracture. The correlation between the infrared thermographs and the change in the electrical resistance could be regarded as an evidence of the damage mechanisms of the CFRP composites. During three-point-bending loading, the main damage forms were the simultaneity fracture of matrix and fibers firstly, then matrix cracking and the debonding between matrix and fiber were carried out. This results can be shown in Fig. 9(a) and (b). During interlaminar shear loading, the change in the electrical resistance was related to the damage degree of interlaminar structure. Electrical resistance measurement was more sensitive to the damage behaviour of the CFRP composites than the stress/time curve.

  • PDF

Ablative Properties of 4D Carbon/Carbon Composites by Combustion Test

  • Park, Jong-Min;Ahn, Chong-Jin;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.316-323
    • /
    • 2008
  • The factors that influence ablation resistance in fiber composites are properties of the reinforced fiber and matrix, plugging quantity of fiber, geometrical arrangement, crack, pore size, and their distributions. To examine ablation resistance according to distribution of crack and pore size that exist in carbon/carbon composites, this study produced various sizes of unit cells of preforms. They were densified using high pressure impregnation and carbonization process. Reinforced fiber is PAN based carbon fiber and composites were heat-treated up to $2800^{\circ}C$. The finally acquired density of carbon/carbon composites reached more than $1.932\;g/cm^3$. The ablation test was performed by a solid propellant rocket engine. The erosion rate of samples is below 0.0286 mm/s. In conclusion, in terms of ablation properties, the higher degree of graphitization is, the more fibers that are arranged vertically to the direction of combustion flame are, and the less interface between reinforced fiber bundle and matrix is, the better ablation resistance is shown.