• 제목/요약/키워드: Polymer support

검색결과 200건 처리시간 0.023초

Effects of polymer support fluid on shaft resistance of offshore bored piles

  • Chungsik Yoo;Chun-Won Shin
    • Geomechanics and Engineering
    • /
    • 제33권5호
    • /
    • pp.519-528
    • /
    • 2023
  • In this paper, we present the results of an experimental study on the effect of polymer support fluid on shaft resistance of offshore bored piles. A series of pullout tests were performed on bored piles installed under various boundary conditions considering different types of grounds and support fluids, and a range of support fluid exposure times. Contrary to previous studies concerning onshore bored piles, a time dependent effect of polymer fluid on shaft resistance was observed in all ground types. The adverse effect of polymer support fluid on the shaft resistance, however, was considerably less than bentonite support fluid for a given exposure time. No significant reduction in shaft resistance was evident when limiting the exposure time of the polymer support fluid to the side wall of the borehole within 2-3 hours. The degree to which the polymer fluid affects shaft resistance seemed to vary with the ground type. A proper consideration should be given to the time dependent effect of polymer fluid on shaft resistance of bored piles installed in offshore construction environment to limit its adverse effect on the pile performance. The practical implications of the findings are discussed.

An Improved Procedure for 2-amino-5-nitro-4,6-diarylcyclohex-1-ene-1,3,3-tricar Bonitriles; Carbonate on Polymer Support as Mild and Reusable Catalyst

  • Prasanna, T.S.R.;Raju, K. Mohana
    • 대한화학회지
    • /
    • 제55권5호
    • /
    • pp.808-811
    • /
    • 2011
  • A new catalytic system has been developed in the synthesis of 2-amino-5-nitro-4,6-diarylcyclohex-1-ene-1,3,3-tricarbonitriles using carbonate on polymer support (Amberlyst A-26 $NaCO_3{^-}$). Short reaction time, simplicity of isolation, safe catalyst and high yields of product are the features.

Polymer Support Immobilized Acidic Ionic Liquid: Preparation and Its Application as Catalyst in the Synthesis of Hantzsch 1,4-Dihydropyridines

  • Jahanbin, Bentolhoda;Davoodnia, Abolghasem;Behmadi, Hossein;Tavakoli-Hoseini, Niloofar
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2140-2144
    • /
    • 2012
  • A polymer support immobilized acidic ionic liquid was prepared by copolymerization of 3-vinyl-1-(4-sulfonic acid)butylimidazolium hydrogen sulfate with styrene in the presence of benzoyl peroxide and its primary application as a solid acidic heterogeneous catalyst to the synthesis of Hantzsch 1,4-dihydropyridines through a one-pot three-component reaction of aromatic aldehydes, ethyl acetoacetate and ammonium acetate was investigated. The results showed that this heterogeneous catalyst has high catalytic activity and the desired products were obtained in good to high yields. Moreover, the catalyst was found to be reusable and a considerable catalytic activity still could be achieved after third run.

Siloxane 유-무기 복합막 제조와 투과증발법을 이용한 Acetone-Butanol-Ethanol (ABE) 용액에서 부탄올의 분리 (Preparation of Organic/Inorganic Siloxane Composite Membranes and Concentration of n-butanol from ABE Solution by Pervaporation)

  • 지기용;이용택
    • Korean Chemical Engineering Research
    • /
    • 제51권5호
    • /
    • pp.580-586
    • /
    • 2013
  • 본 연구에서는 투과증발 공정에서 지지체에 따른 투과특성의 차이를 알아보기 위해 고분자 지지체 복합막과 세라믹 지지체 복합막을 제조하였다. 고분자 지지체로는 polyvinylidene fluoride (PVDF)를 사용하였으며 세라믹 지지체로는 $a-Al_2O_3$ 를 사용하였다. 활성층으로는 각각의 지지체에 고무상 고분자인 polydimethoxysilane (PDMS)를 코팅하였다. 제조한 복합막의 구조와 특성을 살펴보기 위해 SEM, contact angle, XPS로 분석하였으며, 이를 투과증발 공정에 적용하여 다성분계의 혼합용액에서 복합막의 지지체에 따른 투과 특성을 알아보았다. 투과 증발 실험 결과 세라믹 지지체 복합막의 투과 플럭스는 $250.87g/m^2h$로 고분자 지지체 복합막의 $159.64g/m^2h$ 보다 높은 투과 플럭스를 나타내었다. 그러나 선택도의 경우 고분자 지지체 복합막이 31.98로 20.66인 세라믹 지지체 복합막보다 더 높게 나타나는 것을 확인하였다.

직류전기철도에서의 고분자 지지애자 적용에 관한 연구 (The research for the application of polymer support insulator used in DC railway system)

  • 이기승;김윤식;심재석;정호성;이기원;조호령
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.371-377
    • /
    • 2009
  • The use of polymer insulator has increased all over the world. As of 2000's KEPCO has used it fully since they introduced it in early 1990's. In Korea it is very widely used by KORAIL which uses AC 25 kV system in the ground electric car line. And It is also used in tunnel electric car line to support AT feeder line. But it has not been used in the section of DC 1500 V. In case of DC 1500 V electric railway system It is has been developed by research institutes by means of R&D projects since 2008. The user cleans porcelain insulators regularly by water because of dusts and pollution. In case of polymer insulators It is very easy to be made dirty by pollution because of the material properties and hard to be cleaned by cleansing. In accordance with these reasons It is worried about deterioration. This paper deals with anticipating problems when we apply it to DC electric railway system and the procedure for testing polymer support insulator.

  • PDF

고분자전해질연료전지용 과불소계 술폰화 이오노머-PTFE 강화막 (Perfluorinated Sulfonic Acid Ionomer-PTFE Pore-filling Membranes for Polymer Electrolyte Membrane Fuel Cells)

  • 강성은;이창현
    • 멤브레인
    • /
    • 제25권2호
    • /
    • pp.171-179
    • /
    • 2015
  • 과불소계 술폰화 이오노머(perfluorinated sulfonic acid ionomers; PFSAs)는 뛰어난 수소이온전도성과 높은 내화학성으로 인해 고분자 전해질 연료전지(polymer electrolyte fuel cells)용 고체전해질로 널리 사용되고 있다. 그러나 PFSA 전해질은 가습-건조조건에서 연료전지가 구동에 따라 반복적인 팽윤-수축으로 인해 전극층이 전해질로부터 탈리되어 전기화학적 수명특성이 감소되는 문제점을 가지고 있다. 본 연구에서는 다공성 PTFE support film의 기공특성에 대한 이해를 바탕으로 기공구조 내 나피온 이오노머를 함침시키는 강화막을 제조하였고, 기본특성을 평가하였다. 제조된 강화막은 매우 높은 수소이온전도도(${\sim}~0.5S\;cm^{-1}@90^{\circ}C$ in liquid water)를 나타내었다.

고분자 물질 도포가 미생물 부착과 생물막 성장에 미치는 영향 (Effect of Polymer Coating on the Initial Microorganism Attachment and the Biofilm Growth)

  • 박영식;송승구
    • 한국환경보건학회지
    • /
    • 제24권2호
    • /
    • pp.104-109
    • /
    • 1998
  • The objective of this study was to examine the effect of polymer coating on the initial microorganism attachment and the biofilm growth. Such as nonion(polyacrylamine), anion(CMC-Na) and cation polymer coagulant(chitosan and PEI) were used for coating material of the support carrier(acryl plate). When polymer coagulant was coated with 5, 10, 20, 35, 50, 100 and 200 mg/l on the surface of acryl plate, initial microorganism attachment increased and optimum concentration for the attachment was 35 mg/l. Biofilm growth experiments were conducted with the substrate loading of 12.7gSCOD/$m^2\cdot$ day using RBC. The polymer coagulants such as CMC-Na, polyacrylamide, PEI and chitosan coating on the acryl plate facilitated the biofilm growth of microorganisms. Until the biofilm dry weight grows up to 0. 0038g/cm$^2$, biofilm growth on the plate coated with cation polymer like chitosan was better than that on the coated plate of nonion(polyacrylamine), anion(CMC-Na) polymer coagulant.

  • PDF

Fabrication of Pre-Exfoliated Clay Masterbatch via Exfoliation-Adsorption of Polystyrene Nanobeads

  • Khvan, Svetlana;Kim, Jun-Kyung;Lee, Sang-Soo
    • Macromolecular Research
    • /
    • 제15권1호
    • /
    • pp.51-58
    • /
    • 2007
  • The approach studied in the present work produced an exfoliated state of clay layers via confinement of the charged nano-sized polystyrene (PS) beads within the gallery of swollen pristine clay. It was demonstrated that adsorption of the polymer nanobeads dramatically promotes expansion of the clay gallery. A comparative study of incorporation was conducted by employing organo-modified clay along with two different colloid polymer systems: electrostatically stabilized PS nanobeads and cationic monomer-grafted PS nanobeads. The mechanism of adsorption of the monomer-grafted polymer beads onto clay via cationic exchange between the alkyl ammonium group of the polymer nanobeads and the interlayer sodium cation of the layered silicate was verified by using several techniques. As distinct from the polymer nanobeads formed using conventional miniemulsion polymerization method, competitive adsorption of stabilizing surfactant molecules was be prevented by grafting the surface functional groups into the polymer chain, thereby supporting the observed effective adsorption of the polymer beads. The presence of surface functional groups that support the establishment of strong polymer-clay interactions was suggested to improve the compatibility of the clay with the polymer matrix and eventually play a crucial role in the performance of the final nanocomposites.

Polymer materials for enzyme immobilization and their application in bioreactors

  • Fang, Yan;Huang, Xiao-Jun;Chen, Peng-Cheng;Xu, Zhi-Kang
    • BMB Reports
    • /
    • 제44권2호
    • /
    • pp.87-95
    • /
    • 2011
  • Enzymatic catalysis has been pursued extensively in a wide range of important chemical processes for their unparalleled selectivity and mild reaction conditions. However, enzymes are usually costly and easy to inactivate in their free forms. Immobilization is the key to optimizing the in-service performance of an enzyme in industrial processes, particularly in the field of non-aqueous phase catalysis. Since the immobilization process for enzymes will inevitably result in some loss of activity, improving the activity retention of the immobilized enzyme is critical. To some extent, the performance of an immobilized enzyme is mainly governed by the supports used for immobilization, thus it is important to fully understand the properties of supporting materials and immobilization processes. In recent years, there has been growing concern in using polymeric materials as supports for their good mechanical and easily adjustable properties. Furthermore, a great many work has been done in order to improve the activity retention and stabilities of immobilized enzymes. Some introduce a spacer arm onto the support surface to improve the enzyme mobility. The support surface is also modified towards biocompatibility to reduce non-biospecific interactions between the enzyme and support. Besides, natural materials can be used directly as supporting materials owning to their inert and biocompatible properties. This review is focused on recent advances in using polymeric materials as hosts for lipase immobilization by two different methods, surface attachment and encapsulation. Polymeric materials of different forms, such as particles, membranes and nanofibers, are discussed in detail. The prospective applications of immobilized enzymes, especially the enzyme-immobilized membrane bioreactors (EMBR) are also discussed.