• Title/Summary/Keyword: Polymer science

Search Result 5,831, Processing Time 0.031 seconds

Characterization of a Cross-linked Polymer Electrolyte Prepared from Oligo(ethylene glycol) methacrylates-Acrylonitrile

  • Lee, Chang-Ryoul;Hyun, Seok-Hee;Lee, Suk-Kee;Kim, Woo-Sik;Moon, Seong-In;Jin, Bong-Soo
    • Macromolecular Research
    • /
    • v.9 no.5
    • /
    • pp.292-295
    • /
    • 2001
  • A cross-linked solid polymer electrolyte was prepared by copolymerizing photochemically acrylonitrile (AN), oligo(ethylene glycol ethyl ether) methacrylate, oligo(ethylene glycol) dimethacrylate in the presence of lithium perchlorate as a lithium salt, ethylene carbonate-propylene carbonate as a mixed plasticizer, and poly(ethylene oxide) as a polymer matrix. The maximum ionic conductivity of the polymer electrolyte was 2.35$\times$10$\^$-3/ S/cm. The interface resistance of the polymer electrolyte was very low compared to that of the polymer electrolyte without AN. The former electrolyte was stable up to 4.3 V and the Ah efficiency was nearly 100% during the charge-discharge cycle.

  • PDF

Transesterification and Compatibilization in the Blends of Bisphenol-A Polycarbonate and Poly(trimethylene terephthalate)

  • Na Sang-Kuwon;Kong Byeong-Gi;Choi Changyong;Jang Mi-Kyeong;Nah Jae-Woon;Kim Jung-Gyu;Jo Byung-Wook
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.88-95
    • /
    • 2005
  • Melt blending of Bisphenol A polycarbonate (PC) and poly(trimethylene terephthalate) (PTT) was carried out over the entire composition range. The mixing time was varied up to 90 min. The resulting samples were analyzed by FT-IR, DSC, XRD, DMTA, $^{1}H NMR$, and SEM. The process of transesterification between the two polymers and their resulting compatibilization were observed. The behaviors of the PTT-rich and PC-rich blends were different and an equilibrium was found to exist. Peculiar behavior, which was different from that of the PTT-rich and PC-rich blends, was exhibited by the 50/50 (PTT/PC) blend.

Anchoring and Alignment Behavior of Liquid Crystals on Poly(vinyl cinnamate) Thin Films Treated in Various Ways

  • Lee, Taek-Joon;Hahm, Suk-Gyu;Lee, Seung-Woo;Ree, Moon-Hor
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.240-240
    • /
    • 2006
  • Thin films of poly(vinyl cinnamate) (PVCi) were prepared on indium tin oxide (ITO) glass and silicon substrates by conventional spin coating and subsequent drying process. The thicknesses of the films ranged 50-120 nm. The films' surface was treated by rubbing, ultraviolet exposure or their combinations in various ways with changing rubbing strength and exposure dose. These films were examined in detail in the aspects of surface morphology and chain orientation. Further, the anchoring and orientation behaviors of liquid crystals on the film surfaces were investigated. All the results will be discussed in detail.

  • PDF