• Title/Summary/Keyword: Polymer resin flow

Search Result 41, Processing Time 0.022 seconds

Transverse Flow and Process Modeling on the Polymer Composite with 3-Dimensionally Stitched Woven Fabric

  • Lee, Geon-Woong;Lee, Sang-Soo;Park, Min;Kim, Junkyung;Soonho Lim
    • Macromolecular Research
    • /
    • v.10 no.4
    • /
    • pp.194-203
    • /
    • 2002
  • In resin infusion process(RIP), the fiber and the resin are in contact with each other for an impregnation step and often results in flow-induced defects such as poor fiber wetting and void formation. Resin flow characteristics in transverse direction and process modeling for woven fabric were studied, and the process modeling was applied to the manufacturing of hybrid composite materials. This study also considered the compressibility of woven fabrics in a series of compression force, and it was fitted well to an elastic model equation. Void formation was varied with the processing conditions in the stage of manufacturing composites using RIP. It was concluded from this study that proper combination of pressure build-up and dynamic heating condition makes important factor for flow-induced composite processing.

A Study on Compressor Seal for Automotive Air-conditioner using Polymer Resin (고분자 수지를 이용한 자동차 에어컨용 압축기의 씰에 관한 연구)

  • 정태형;하영욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.22-27
    • /
    • 2002
  • The existing compressor steel seal used in automotive air-conditioner has the problem of oil leakage and the deterioration in shielding performance, due to the abrasion and the corrosion of the material. A new type of polymer resin seal is studied in the research. The polymer resin seal has the characteristics of high anti-abrasiveness and anti-corrosiveness, which can overcome the deflects of the steel seal. In addition, the seal needs lower manufacturing cost and is appropriate to mass production, because it is made by the injection molding method requiring no mechanical processing. The profile generation program for seal mold has been developed using the gradient method, and the molding characteristics of the seal have analyzed through the flow analysis and the warpage analysis. The program has been verified by comparing the analysis results with the measured data of the test product. The research might be said to provide the basic method to produce the polymer resin seals with various types and dimensions.

  • PDF

A Study on Compressor Seal for Automotive Air-conditioner using Polymer Resin (고분자 수지를 이용한 자동차 에어컨용 압축기의 씰에 관한 연구)

  • 정태형;하영욱
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.81-87
    • /
    • 2002
  • The existing compressor steel seal used in automotive air-conditioner has the problem of oil leakage and deterioration in shielding performance, due to the abrasion and corrosion of the material. A new type of polymer resin seal studied in this research has the characteristics of high anti-abrasiveness and anti-corrosiveness, which can oversome the defects of the steel seal. In addition, the seal needs lower manufacturing cost and is appropriate to mass production, because it is made by the injection molding method requiring no mechanical processing. The profile generation program for seal mold has been developed using the gradient method, and the molding characteristics of the seal have analyzed through the flow analysis and the warpage analysis. The program has been verified by comparing the analysis results with the measured data of the test product. The research might be said to provide the basic method to produce the polymer resin seals with various types and dimensions.

A Study on Cause of Defects in NIL Molding Process using FEM (유한요소 해석을 이용한 나노임프린트 가압 공정에서 발생하는 결함 원인에 대한 연구)

  • Song, N.H.;Son, J.W.;Kim, D.E.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.364-367
    • /
    • 2007
  • In nano-imprint lithography (NIL) process, which has shown to be a good method to fabricate polymeric patterns, several kinds of pattern defects due to thermal effects during polymer flow and mold release operation have been reported. A typical defect in NIL process with high aspect ratio and low resist thickness pattern is a resist fracture during the mold release operation. It seems due to interfacial adhesion between polymer and mold. However, in the present investigation, FEM simulation of NIL molding process was carried out to predict the defects of the polymer pattern and to optimize the process by FEA. The embossing operation in NIL process was investigated in detail by FEM. From the analytical results, it was found that the lateral flow of polymer resin and the applied pressure in the embossing operation induce the weld line and the drastic lateral strain at the edge of pattern. It was also shown that the low polymer-thickness result in the delamination of polymer from the substrate. It seems that the above phenomena cause the defects of the final polymer pattern. To reduce the defect, it is important to check the initial resin thickness.

  • PDF

A study on the Shrinkage Reduction and Strengths of Unsaturated Polyester Mortar (불포화 폴리에스테르 레진 모르타르의 수축저감 및 강도특성에 관한 연구)

  • 최낙운;최길섭;김완기;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.343-348
    • /
    • 1999
  • The purpose of this study is to evaluated the effects of added expanded polystyrene on the basic properties of UP mortar. Polyester resin mortars are prepared with expanded polystyrene ratio in styrene monomer (EPS/PS), and the ratio of total polystyrene resin to UP resin (PS/UP). And it is tested for viscosity of UP resin added PS resin, slump-flow test, working life, flexural and compressive strengths, and curing shrinkage test. From the test result, Viscosity of resin for polymer mortar increases with increasing PS content. Curing shrinkage of UP mortar is considerably smaller than that of plain UP mortar, nevertheless, reduction in the strengths is not recognized according to adding PS resin. In this study, we can obtain the optimum mix proportions of polymer mortar using PS resin.

  • PDF

Permeability Measurement of the Braided Preform in Resin Transfer Molding (고분자 수지 이송 성형에서 브레이드 프리폼의 투과율 계수 측정)

  • Y. K. Cho;Y. S. Song;J. R. Youn
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.65-67
    • /
    • 2002
  • Resin Transfer Molding(RTM) is increasingly used for producing fiber reinforced polymer composites, the resin has to flow a long distance to impregnate the dry fibers. The measure for the resistance of the fiber preform to the resin flow is the permeability of the fiber preform. Permeability is a key issue in the design of molds and processes and in flow modeling. In this study, permeability measurement for braided preform is presented and compared with the permeability calculated numerically. Experimental techniques being used to measure the permeability are also discussed. Measurement is conducted in radial flow test under constant pressure.

  • PDF

Three-Dimensional Mold Filling Simulation for Multi-layered Preform in Resin Transfer Molding (다층 예비성형체에 대한 삼차원 충진해석)

  • Yang, Mei;Song, Young-Seok;Youn, Jae-Roun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.137-140
    • /
    • 2005
  • Resin transfer molding (RTM) is one of the most popular processes for producing fiber reinforced polymer composites. In the manufacture of complex thick composite structures, analysis on flow front advancement on the resin impregnating the multi-layered fiber preform is helpful for the optimization of the process. In this study, three-dimensional mold filling simulation of RTM is carried out by using CVFEM (Control Volume Finite Element Method). On the assumption of isothermal flow of Newtonian fluid, Darcy’s law and continuity equation are used as governing equations. Different permeability tensors employed in each layer are obtained by experiments. Numerically predicted flow front is compared with experimental one in order to validate the numerical results. Flow simulations are conducted in the two mold geometries, rectangular plate and hollow cylinder. Permeability tensor of each layer preform in Cartesian coordinate system is transformed to cylinder coordinates system so that the flow within the multi-layered preforms of the hollow cylinder can be calculated exactly. Our emphasis is on the three dimensional flow analysis for circular three-dimensional braided preform, which shows outstanding mechanical properties such as high impact strength and toughness compared with other conventional two-dimensional laminar-structured preforms.

  • PDF

Development of Polymer-Modified Cementitious Self-Leveling Materials for Thin Coat

  • Kim, Wan-Ki;Do, Jeong-Yun;Soh, Yang-Seob
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.58-66
    • /
    • 2001
  • Recently, polymer-modified mortar has been studied for proposed use on industrial floors as top coat with thin thickness, typically 5~15mm. The purpose of this study is to evaluate basic properties of self-leveling materials using polymer dispersions as kinds of SBR, PAE, St/BA with thin coat (under 3mm). Superplasticizer and thickener have been included in the mixes to reduce bleeding and drying shrinkage as well as to facilitate the workability required. The self-leveling materials using four types of polymer dispersion are prepared with polymer-cement ratio which respectively range from 50% and 75%, and tested for basic characteristics such as unit weight, air content, flow, consistency change and adhesion in tension. From the test results, the self-leveling materials using PAE emulsion at curing age of 28days are almost equal to those of conventional floor using urethane and epoxy resin. The adhesion in tension of self-leveling mortars using SBR latex and PAE emulsion at curing age of 3days is over 17 kgf/cm$^2$(1.67MPa). Consistency change is strongly dependent on the type of polymer dispersion. It is concluded that the self-leveling materials using polymer dispersions can be used in the same manner as conventional floor using thermosetting resin in practical applications, in the selection of polymer dispersions.

  • PDF

The Effect of Contaminants on Tracking Aging in Polymer Insulating Materials (고분자 절연재료의 트랙킹 열화에 미치는 오손액의 영향)

  • 조한구;박용관
    • Electrical & Electronic Materials
    • /
    • v.10 no.8
    • /
    • pp.770-777
    • /
    • 1997
  • Some polymer materials including epoxy resin are being instead of porcelain for outdoor insulating materials such as insulators bushings cable terminators and surge arrester housing. And the largest problem to be overcomed is the tracking and erosion of the outdoor polymer material brought about by dry band arcing during prolonged exposure to contaminations. In this paper the effect of surface tension wettability flow rate of contaminants with varying surfactant content and frequency of applied voltage on the tracking breakdown of epoxy insulating materials were investigated. As the flow rate of contaminant is increased the surface resistivity is decreased and the leakage current is increased the time to tracking breakdown is decreased. It is found that time to tracking breakdown depends on the surface tension of contaminant that is difference of wettability. And as the frequency of applied voltage is increased time to tracking breakdown decreased.

  • PDF

Modeling reaction injection molding process of phenol-formaldehyde resin filled with wood dust

  • Lee, Jae-Wook;Kwon, Young-Don;Leonov, A.I.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.2
    • /
    • pp.59-63
    • /
    • 2008
  • A theoretical model was developed to describe the flow behavior of a filled polymer in the packing stage of reaction injection molding and predict the residual stress distribution of thin injection-molded parts. The model predictions were compared with experiments performed for phenol-formaldehyde resin filled with wood dust and cured by urotropine. The packing stage of reaction injection molding process presents a typical example of complex non-isothermal flow combined with chemical reaction. It is shown that the time evolution of pressure distribution along the mold cavity that determines the residual stress in the final product can be described by a single 1D partial differential equation (PDE) if the rheological behavior of reacting liquid is simplistically described by the power-law approach with some approximations made for describing cure reaction and non-isothermality. In the formulation, the dimensionless time variable is defined in such a way that it includes all necessary information on the cure reaction history. Employing the routine separation of variables made possible to obtain the analytical solution for the nonlinear PDE under specific initial condition. It is shown that direct numerical solution of the PDE exactly coincides with the analytical solution. With the use of the power-law approximation that describes highly shear thinning behavior, the theoretical calculations significantly deviate from the experimental data. Bearing in mind that in the packing stage the flow is extremely slow, we employed in our theory the Newtonian law for flow of reacting liquid and described well enough the experimental data on evolution of pressure.