• Title/Summary/Keyword: Polymer microstructures

Search Result 78, Processing Time 0.024 seconds

Rapid Manufacturing of 3D-Shaped Microstructures by UV Laser Ablation (UV 레이저 어블레이션에 의한 3차원 형상 미세 구조물의 쾌속제작)

  • 신보성;양성빈;장원석;김재구;김정민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.30-36
    • /
    • 2004
  • Recently, the lead-time of a product is to be shortened in order to satisfy consumer's demand. It is thus important to reduce the manufacturing time and the cost of 3D-shaped microstructures. Micro-Electro-Mechanical Systems (MEMS) and devices are usually fabricated by lithography-based methods. Above method is not flexible for the rapid manufacture of 3D-shaped microstructures because it depends on work's experiences and requires excessive cost and time for making many masks. In this paper, the effective laser micrornachining is developed to fabricate UV sensitive polymer microstructures using laser ablation. The proposed process, named by laser microRP, is a very useful method on rapid manufacturing for 3D-shaped microstructures.

Application of the Polymer Behavior Model to 3D Structure Fabrication (3차원 미세 구조물 제작을 위한 폴리머 유동 모델의 적용)

  • Kim, Jong-Young;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.123-130
    • /
    • 2009
  • This study presents the application of a polymer behavior model that considers fluid mechanics and heat transfer effects in a deposition system. The analysis of the polymer fluid properties is very important in the fabrication of precise microstructures. This fluid behavior model involves the calculation of velocity distribution and mass flow rates that include the effect of heat loss in the needle. The effectiveness of the proposed method was demonstrated by comparing estimated mass fluid rates with experimental values. The mass fluid rates under various process conditions, such as pressure, temperature, and needle size, reflected the actual deposition state relatively well, and the assumption that molten polycaprolactone(PCL) is a non-Newtonian fluid was reasonable. The successful fabrication of three-dimensional microstructures demonstrated that the model is valid for predicting the polymer behavior characteristics in the microstructure fabrication process. The results of this study can be used to investigate the effect of various parameters on fabricated structures before turning to experimental approaches.

Superhydrophobic Engineered Surface Based on Nanohoneycomb Structures (나노허니컴 구조물을 이용한 산업용 극소수성 표면 제작)

  • Kim, Dong-Hyun;Park, Hyun-Chul;Lee, Kun-Hong;Hwang, Woon-Bong
    • Composites Research
    • /
    • v.20 no.2
    • /
    • pp.17-20
    • /
    • 2007
  • Superhydrophobic polytetrafluoroethylene ($Teflon^{(R)}$, Dupont) sub-micro and nanostructures were fabricated by the dipping method, based on anodization process in oxalic acid. The polymer sticking phenomenon during the replication creates the sub-microstructures on the negative polytetrafluoroethylene nanostructure replica. This process gives a hierarchical structure with nanostructures on sub-microstructures, which looks like the same structures as lotus leaf and enables commercialization. The diameter and the height of the replicated nano pillars were 40 nm and 40 um respectively. The aspect ratio is approximately 1000. The fabricated surface has a semi-permanent superhydrophobicity, the apparent contact angle of the polytetrafluoroethylene sub-micro and nanostructures is about $160^{\circ}$, and the sliding angle is less than $1^{\circ}$.

Fabrication of a Micro-Structure by Modified DXRL Process (수정된 DXRL 공정에 의한 미세구조 제작)

  • Han, Sang-Pil;Jeong, Myung-Yung;Jung, Suk-Won;Kim, Jin-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1517-1523
    • /
    • 2003
  • Deep X-ray lithography (DXRL), a fabrication method for the production of microstructures with a high aspect ratio, plays an important role in the subsequent electroplanting process. However, secondary radiation is generated during X-ray exposure and damages the resist adhesion to the metal layer. To solve adhesion problems, we modified the conventional DXRL process, changing the sequence of polymer adhesion in DXRL process. With optimized X-ray exposure and development conditions based on a calculated and modified X-ray power spectrum, we fabricated various polymer microstructures and achieved a maximum aspect ratio of 40.

Contact Print Lithography for Precise Transplantation of Three-dimensional Microstructures into a Microsystem (표면접촉 인쇄방식을 이용한 극미세 3차원 형상의 이식공정에 관한 연구)

  • Park, Sang-Hu;Jeong, Jun-Ho;Choi, Dae-Geun;Kim, Ki-Don;Altun, Ali Ozhan;Lee, Eung-Sug;Yang, Dong-Yol;Kong, Hong-Jin;Lee, Kwang-Sup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.136-142
    • /
    • 2007
  • Precise fabrication of three-dimensional (3D) self-standing microstructures on thin glass plates via two-photon induced polymerization (TPP) has been an important issue for innovative 3D nanodevices and microdevices. However, there are still issues remaining to be solved, such as building 3D microstructures on opaque materials via TPP and being able to implant them as functional parts onto practical systems. To settle these issues simply and effectively, we propose a contact print lithography (CPL) method using an ultraviolet (UV)-curable polymer layer. We report some of the possibilities and potential of CPL by presenting our results for transplanting 3D microstructures onto large-area substrates and also our examination of some of the effects of the process parameters on successful transplantation.

Investigation into Deformation of Three-Dimensional Microstructures via Surface Tension of a Rinsing Material During a Developing Process (현상공정에서 표면장력에 의한 극미세 3 차원 구조물의 변형거동 분석 및 저감방안에 관한 연구)

  • Park, Sang-Hu;Yang, Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.303-309
    • /
    • 2008
  • Dense and fine polymer patterns often collapse, as they come into contact with each other at their protruding tips. Resist pattern collapse depends on the aspect ratio of patterns and the surface tension of rinsing materials. The pattern collapse is a very serious problem in microfabrication, because it is one of the factors which limit the device dimensions. The reasons for the pattern collapse are known as the surface tension of rinse liquid, centrifugal force and rinse liquid flow produced in the developing process. In this work, we tried to evaluate the pattern collapse of three-dimensional microstructures that were fabricated by two-photon induced photopolymerization, and showed the way how to reduce the deformation of microstructures.

Charge Transport in Uniaxially Aligned Liquid-crystalline Polymer Transistors

  • Lee, Mi-Jeong;Chen, Zhuoying;Sirringhaus, H.;Lee, Jang-Sik
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.27.2-27.2
    • /
    • 2011
  • Polymer electronics is the one of the most promising way to realize the flexible electronics and many studies made remarkable progress to achieve the improvement in performance of polymer electronics comparable to current silicon-based technology. PBTTT is conjugated semiconducting polymer with highly ordered, chain-extended crystalline microstructures and shows high field effect mobilities above 0.1 $cm^2/Vs$. We studied PBTTTs FETs phase and explored methods to control channel interface in various device structures. Especially, in PBTTTs' unique nano-ribbon phase, we could obtain high mobilities of up to 0.4 $cm^2/Vs$, which was not reached before. Alignment of PBTTTs film was carried out using zone casting and anisotropy of mobilities in parallel and perpendicular to the polymer chain direction was investigated. Optical anisotropy in aligned nano-ribbon PBTTT FETs was also studied using a polarized optical absorption.

  • PDF

Development of Polymer-Concrete Composite(I) - Physical Properties of Polymer-Cement Concrete Composites - (폴리머-콘크리트 복합재료 개발(I) - 폴리머-시멘트 콘크리트의 물성 -)

  • Hwang, Eui-Hwan;Kil, Deog-Soo;Oh, In-Seok
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.979-984
    • /
    • 1997
  • Test specimens of polymer-cement concrete composites were prepared using styrene-butadiene rubber(SBR) latex, ethylenevinyl acetate(EVA) and polyacrylic ester(PAE) emulsions as polymer dispersions in cement modified system at constant slump($10{\pm}0.5cm$), then compressive and flexural strengths water absorption, pore size distribution, and microstructures were investigated. Compressive and flexural strengths of these composites were remarkably improved with an increase of polymer-cement ratio. These composites had a desirable pore size distribution against frost damage due to a small capillary pore volume. Continuous polymer film was able to form in higher than 15% of polymer cement ratio.

  • PDF

The influence of polymer compounds on the HTS films

  • Soh, Deawha;Korobova, N.;Park, Jung-Cheul;Jeun, Yong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.112-115
    • /
    • 2000
  • In this work the results of the systematic investigations on the effect of organic addition by using polymer compound as starting materials on the superconducting properties of YBCO electrophoretic deposited films on silver substrate are presented. The characteristics of the films were examined by X-ray diffraction and SEM observation. Our results show that the adhesion and microstructure of these films are sensitive to the nature of polymer compounds and sintering conditions (electrophoretic deposition, drying and heat-treatment procedures). To develop optimum microstructures for samples processed in this manner it is necessary to have an understanding of how these processes affect the microstructure and hence the properties of ceramic superconductors.

  • PDF

$MoSi_2$/SiC Ceramic Composites Prepared by Polymer Pyrolysis (고분자 열분해에 의한 $MoSi_2$/SiC 세라믹 복합체)

  • 김범섭;김득중;김동표
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.805-810
    • /
    • 2000
  • The formation, microstructure and properties of MoSi2/SiC ceramic composites by polymer pyrolysis were investigated for the application of heating element material. Polymethylsiloxanes were mixed with Si, SiC, MoSi2 as filler and ceramic composites prepared by pyrolysis in N2 atmosphere at 1320~145$0^{\circ}C$ were studied. Dimensional change, density variation and phases were analyzed and correlated to the resulting material properties. Microstructures of ceramic composite prepared by polymer pyrolysis were composed of MoSi2, SiC and silicon oxycarbide glass matrix. Depending on the pyrolysis conditions, ceramic composites with a density of 86~90 TD%, a fracture strength of 213~284 MPa, a thermal expansion coefficient of 4~7$\times$10-6 were obtained. The electrical resistivity of the specimen decreased with increasing of temperature up to 50$0^{\circ}C$.

  • PDF