• Title/Summary/Keyword: Polymer conjugate

Search Result 32, Processing Time 0.015 seconds

Application and therapeutic effects of sickle red blood cells for targeted cancer therapy (표적항암치료를 위한 겸형적혈구의 응용 및 치료 효과)

  • Choe, Se-woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2395-2400
    • /
    • 2016
  • Conventional drug carriers such as liposomes, nanoparticles, polymer micelles, polymeric conjugate and lipid microemulsion for cancer chemotherapy shield normal tissues from toxic drugs to treat cancer cells in tumors. However, inaccurate tumor targeting uncontrolled drug release from the carriers and unwanted accumulation in healthy sites can limit treatment efficacy with current conventional drug carriers with insufficient concentrations of drugs in the tumors and unexpected side effects as a result. Sickle red blood cells show natural tumor preferential accumulation without any manipulation due to the adhesive interaction between molecular receptors on the membrane surface and counter-receptor on endothelial cells. In addition, structural changes of microvascular in tumor sites enhances polymerization of sickle red blood cells. In this research, we examined the use of sickle red blood cells as a new drug carrier with novel tumor targeting and controlled release properties to quantify its therapeutic effects.

Water Soluble Cyclosporine Monomethoxy Poly(ethyleneglycol) Conjugates as Potential Prod rugs

  • Cho, Hoon;Chung, Yong-Seog
    • Archives of Pharmacal Research
    • /
    • v.27 no.6
    • /
    • pp.662-669
    • /
    • 2004
  • The highly water-soluble monomethoxypoly(ethyleneglycol) (mPEG) prod rugs of cyciosporin A(CsA) were synthesized. These prod rugs were prepared by initially preparing intermediate in the form of carbonate at the 3'-positions of CsA with chloromethyl chloroformate, in the pres-ence of a base to provide a 3'-carbonated CsA intermediate. Reaction of the CsA intermediate with mPEG derivative in the presence of a base provides the desired water-soluble prod rugs. As a model, we chose molecular weight 5 kDa mPEG in the reaction with CsA to give water soluble prodrugs. To prove that the prod rug is decomposed in the body to produce CsA, the enzymatic hydrolysis test was conducted using human liver homogenate at $37^{\circ}C$. The prodrug was decomposed in human liver homogenate to produce the active material, CsA, and the hydrolysis half-life ($t_{1/2}$) of the prodrug, KI-306 was 2.2 minutes at $37^{\circ}C$. However, a demon-stration of non-enzymatic conversion in pH 7.4 phosphate buffer was provided by the fact that the half-life ($t_{1/2}$) is 21 hours at 37$^{\circ}C$. The hydrolysis test in rat whole blood was also conducted. The hydrolysis was seen with half-life ($t_{1/2}$) of about 9.9, 65.0, 14.2, 3.4, 2.1 9.5, and 1.6 minutes for KI-306, 309, 312, 313, 315, 316, and 317, respectively. This is the ideal for CsA prodrug. The pharmacokinetic study of the prodrug, KI-306, in comparison to the commer-cial product (Sandimmune Neoral Solution) was also carried out after single oral dose. Each rat received 7 mg/kg of CsA equivalent dose. Especially, the prodrug KI-306 exhibits higher AUC and $C_{max}$ than the conventional Neoral. The AUC and $C_{max}$ were increased nearly 1.5 fold. The kinetic value was also seen with $T_{max}$ of about 1.43 and 2.44 hours for KI-306 and Neoral, respectively.