• Title/Summary/Keyword: Polymer Mortar

Search Result 302, Processing Time 0.02 seconds

Development of high performance patching repair mortars with light weight and sulfuric acid resistance properties (경량 및 내황산 특성을 가진 고성능 단면복구 모르타르의 개발)

  • Kim, Kyoungmin;Park, Junhui;Ahn, Tae-ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.4
    • /
    • pp.167-172
    • /
    • 2017
  • In this study, high performance patching repair mortars with light weight and sulfuric acid resistance properties were suggested. Their performance estimation were investigated based on KS F 4042 using patching repair mortar with light weight aggregate and soluble polymer of Type I and sulfuric acid resistance mortar of Type II, From these results, it was confirmed that these motors were satisficed and improved by all standard tests of KS F 4042.

A Study on the Base Properties of Nickel Type-Antifungal Agent for Reinforced Concrete Hume Pipe Lining (철근콘크리트흄관 라이닝용 니켈계 방균제의 기초적 특성 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.41-47
    • /
    • 2010
  • It has been continuously noted that many sewage treatment concrete structures have deteriorated due to sulfur-oxidizing bacteria. There have been many reports on approaches to protecting concrete from this bacteria corrosion. The purpose of this study is to evaluate the inhibition of growth of a sulfur-oxidizing bacterium by a antifungal agent such as $NiSO_4{\cdot}6H_2O$, and the characteristics of polymer cement mortar using nickel type antifungal agent. First, we developed antifungal agents using metal nickel and $NiSO_4{\cdot}6H_2O$ to inhibit the growth of thiobacillus novellus, which is the sulfur-oxidizing bacteria in concrete. Then, ordinary cement mortar and polymer cement mortar using nickel type antifungal agent with various polymer-cement ratios, and antifungal agent content were prepared, and were tested for the antifungal adding effect, compressive and flexural strengths, expansion and leaching of nickel ion. From the test results, it was confirmed that the adding of an antifungal agent has an inhibition effect on the growth of sulfur-oxidizing bacteria at antifungal agent contents of 20 mM or more. In addition, the strengths and expansion of polymer cement mortars are not significantly changed by the addition of an antifungal agent. Therefore, the nickel-type antifungal agent developed in this study can be used to improve the durability of reinforced concrete hume pipe in the construction industry.

Impact Fracture Behavior under Temperature Variation and Compressive·Flexural Strength of Cement Composites using VAE Powder Polymer and PVA Fiber (PVA 섬유와 VAE 분말 폴리머를 사용한 시멘트복합체의 압축·휨강도 및 온도변화에 따른 충격파괴거동)

  • Heo, Gwang-Hee;Park, Gong-Gun;Kim, Chung-Gil;Lee, Hyung-Joon;Choi, Won-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.102-112
    • /
    • 2019
  • This paper studies impact fracture behavior under temperature variation and compressive flexural strength of cement composites using VAE(vinyl acetate ethylene) powder polymer and PVA(polyvinyl alcohol) fiber. Impact test were conducted in the temperature range selected for the $-35^{\circ}C$, $0^{\circ}C$ and $35^{\circ}C$. In this experimental study, impact test were carried out using a drop impact testing machine (Ceast 9350) to obtain such as displacement, time, and impact fracture energy of normal specimen and and cement composites specimen. As test results, the use of VAE powder polymer and PVA fiber were observed to enhance the flexural strength of mortar. The compressive strength of PVA fibers reinforced cement composites was slightly decreased at 28 days, but the flexural strength was observed to increase 24.4% of normal mortar strength. As a result of the drop impact tests, PVA fiber reinforced cement composites specimens showed microcracks due to energy dispersion and crack prevention with bridge effect of the fibers, and scabbing or perforation by impact was suppressed. On the other hand, the normal mortar and VAE powder polymer cement composites specimens were carried out to the perforation and macro crack. Most of normal mortar and the cement composites subjected to impact load on specimens shows mostly local brittle failure. The impact resistant performance of the specimen with PVA fiber was greatly improved due to the increase of flexure performance.

Studies on Repair of Reinforced Concrete Structures(I) -Repair Materials and Methods- (철근콘크리트 구조물의 보수공법 연구(I) -보수재료 및 공법-)

  • 연규석;정영수;한만엽;이종열;장태연;정경현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.212-218
    • /
    • 1995
  • This study experimentally evaluated the performance of damaged section which was repaired using polymer materials in reinforced flexural flexural members Six different materials, two types of polymer, two types of polymer-cement and two types of cement, were used by means of injection method on prepacked concrete and spray mortar patching method. As results, the repair works could be done easily and surfaces of the repaired section were smooth.

  • PDF

Drying Shrinkage of Polymer-Modified Mortar Using redispersible Polymer Powder (재유화형 분말수지를 혼입한 폴리머 시멘트 모르타르의 건조수축)

  • Joo, Myung-Ki;Lee, Youn-Su;Yeon, Kyu-Seok;Jo, Kyu-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.165-168
    • /
    • 2002
  • The effects of polymer-cement ratio, antifoamer agent content and shrinkage-reducing agent content on the drying shrinkage of polymer-modified mortars using redispersible polymer powder are examined. As a result, irrespective of the antifoamer content, the drying shrinkage of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content. Such a drying shrinkage development is due to the effect of reducing water from incorporation of EVA redispersible polymer powder and antifoamer agent.

  • PDF

Drying Shrinkage and Strength Properties of Ultrarapid-Hardening Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지를 혼입한 초속경 폴리머시멘트 모르타르의 건조수축 및 강도특성)

  • Lee, Youn-Su;Joo, Myung-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.409-416
    • /
    • 2003
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the air content, setting time, drying shrinkage and strength of polymer-modified mortars using redispersible polymer powder are examined. As a result, the air content of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and antifoamer content. Regardless of the antifoamer content, the setting time of the polymer-modified mortars using redispersible polymer powder tend to delayed with increasing polymer-cement ratio. Irrespective of the antifoamer content, the drying shrinkage of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content. Regardless of the antifoamer content, the flexural and tensile strengths of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

Flexural Properties of Reinforced Steel and GFRP Reinforced Polymer Concrete T-Beams (철근 및 GFRP 보강 폴리머 콘크리트 T형 보의 휨 특성)

  • Yeon Kyu Seok;Kweon Taek Jeong;Jeong jung Ho;Jin Xing Qi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.695-698
    • /
    • 2004
  • Recently, the usage of polymer concrete mortar gathering an interest as a new construction material rapidly increases inside and outside of the country because it is an environment-friendly and endurable material. However, up to these days, the researches about the polymer composite have not been satisfactorily conducted. The polymer concrete is superior to the general cement materials in the properties of strength and durability while it is inferior in elastic modulus. Because that the members using the polymer concrete have therefore higher strength and ductility than the members of general cement concrete, an analysis equation of high-strength cement concrete can be referenced but it is not applied for the researches about the polymer concrete members. In this study, the flexural properties of T-shaped beam of the steel- and GFRP-reinforced polymer concrete are analyzed to examine the suggested analysis equation. Results of this experimental researches are to be used as the basic data in a structural design of the polymer concrete.

  • PDF

Fundamental Properties Polymer-Modified Mortars Using Re-dispersible Polymer Powder (재유화형 폴리머를 혼입한 폴리머 시멘트 모르타르의 기초적 특성)

  • Jang, Kun-Young;Ryu, Dong-Woo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.37-43
    • /
    • 2018
  • According to the evaluation of basic properties and mechanical characteristics of polymer cement mortars that contain re-dispersible type polymer, in the case of fresh mortars, flow and air content were increased due to the dispersion action of entrained air and surfactant with an increase of polymer addition ratio. In the case of mortars after hardening, flexural strength, bonding strength, absorption rate and carbonation resistance were improved due to the increased union and waterproof characteristics of internal structures as a result of the formation of polymer film.

Fundamental Properties Polymer-Modified Mortars Using Re-dispersible Polymer Powder (재유화형 폴리머를 혼입한 폴리머 시멘트 모르타르의 내화특성)

  • Jang, Kun-Young;Ryu, Dong-Woo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.3
    • /
    • pp.35-41
    • /
    • 2019
  • In this study, the fire resistance performance of polymer cement mortars which are used as a representative repair material for section restoration, is evaluated and residual bond strength is measured by considering unity with concrete. According to the evaluation of fire resistance performance of re-emulsification type polymer cement mortars, residual compressive strength was drastically decreased according to heating temperatures with an increase of polymer addition rate, and this seems to be attributable to the application of polymer film. In addition, an explosion phenomenon occurred frequently with an increase of addition rate, so this should be considered when selecting repair materials and processing.

Flexible Properties of MMA Modified Polymer Mortar (MMA 개질 폴리머 모르타르의 굳기전 성질)

  • 연규석;김동준;권윤환;김남길;주명기;이윤수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.763-768
    • /
    • 2002
  • In this study, methyl methacrylate (MMA) - modified polymer mortar(MMPM) was developed and its setting shrinkage and working life properties were surveyed. In order to study the setting shrinkage, setting shrinkage test for the 24 batches were also conducted with taking the MMA monomer content to the UP resin and the mixed content of shrinkage reducing agent(SRA) as variables. Furthermore, in order to study the working life measured gel time, working time, setting time of MMPM and binder. Experimental resurts show that the workability remarkably improved as the mixed MMA content increased. The working life was proportional to MEKPO content and was shorted. also, showed high interrelationship of binder gel time and MMPM working life. Setting shrinkage markedly reduced as the content of MMA and the SRA increased.

  • PDF