• Title/Summary/Keyword: Polymer Actuator

Search Result 176, Processing Time 0.023 seconds

Effect of Surface Roughness on the Actuation of Ionic Polymer Metal Composites (표면 조도에 따른 이온성 고분자-금속 복합체의 구동특성)

  • Jung, Sunghee;Song, Jeomsik;Kim, Guoosuk;Lee, Sukmin;Mun, Museong
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.586-590
    • /
    • 2006
  • As one of electro active polymers for soft smart materials, the ionic polymer metal composites (IPMC) are easy to produce through chemical reduction processing and show high displacements at low voltage. When the IPMC actuates, the deformation depends on a few factors including the structure of based membrane, species and morphology of the metal electrodes, the nature of cations and the level of hydration. As previously published, we have been studying on improvement of actuation through surface electrode modification of IPMC to grasp the effect of electrode morphology on actuation. This study is comparative experiments through the chemical reaction and deposition by ion beam assisted deposition (IBAD) in order to prepare the very thin and homogeneous surface electrode of IPMC. The IPMCs were prepared with different surface roughness of polymer membrane, and the influence of the surface roughness on the actuation was studied. By investigating the electrical properties and driving displacement, the actuating properties of IPMC with different surface roughness were studied.

Mechanical Properties of Conductive Polymer as Actuator Materials with Change of Polymerization Condition (합성조건의 변화에 따른 액츄에이터 재료로서의 전도성 고분자의 기계적 특성)

  • Choi, Young;Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.446-451
    • /
    • 1998
  • Recently, conductive polymer is known to be direct-drive active material which can convert electrical energy directly into mechanical energy. In this paper, the polymerized thickness of polypyrrole is measured with change of polymerization conditions and the mechanical bending is analyzed for various polymerized thickness. In order to detect of mechanical bending, bending beam method using the bridge shaped sample is used. Thickness of polypyrrole is proportional to polymerization time in fixed current density. Also it shows a linear relation with the applied current except high current density. Maximum displacement appears at the thickness of $18.35{\mu}m$ which has been polymerized at $5.4{\mu}A/mm^2$ and for 120min and actuated at the frequency of 0.1Hz.

  • PDF

Hybrid 3D Printing and Casting Manufacturing Process for Fabrication of Smart Soft Composite Actuators (지능형 연성 복합재 구동기 제작을 위한 3D 프린팅-캐스팅 복합 공정)

  • Kim, Min-Soo;Song, Sung-Hyuk;Kim, Hyung-Il;Ahn, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.77-83
    • /
    • 2016
  • Intricate deflection requires many conventional actuators (motors, pistons etc.), which can be financially and spatially wasteful. Novel smart soft composite (SSC) actuators have been suggested, but fabrication complexity restricts their widespread use as general-purpose actuators. In this study, a hybrid manufacturing process comprising 3-D printing and casting was developed for automated fabrication of SSC actuators with $200{\mu}m$ precision, using a 3-D printer (3DISON, ROKIT), a simple polymer mixer, and a compressor controller. A method to improve precision is suggested, and the design compensates for deposition and backlash errors (maximum, $170{\mu}m$). A suitable flow rate and tool path are suggested for the polymer casting process. The equipment and process costs proposed here are lower than those of existing 3D printers for a multi-material deposition system and the technique has $200{\mu}m$ precision, which is suitable for fabrication of SSC actuators.

The Performance of Nafion-Based IPMC Actuators Containing Polypyrrole/Alumina Composite Fillers

  • Lee, Jang-Woo;Kim, Ji-Hye;Chun, Yoon-Soo;Yoo, Young-Tai;Hong, Soon-Man
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1032-1038
    • /
    • 2009
  • A polypyrrole (PPy)/alumina composite filler prepared via in-situ polymerization of pyrrole on alumina particles was incorporated into $Nafion^{(R)}$ to improve the performance of ionic polymer-metal composite (IPMC) actuators. The IPMCs with the pristine PPy without alumina support did not show bending displacements superior to that of the bare Nafion-based IPMC, except at a high PPy content of 4 wt%. This result was attributed to the low redox efficiency of the PPy alone in the IPMC and may have also been related to the modulus of the IPMC. However, at the optimized filler contents, the cyclic displacement of the IPMCs bearing the PPy/alumina filler was 2.2 times larger than that of the bare Nafion-based IPMC under an applied AC potential of 3 Vat 1 Hz. Even under a low AC potential of 1.5 V at 1 Hz, the displacement of the PPy/alumina-based IPMCs was a viable level of performance for actuator applications and was 2.7 times higher than that of the conventional Nafion-based IPMC. The generated blocking force was also improved with the PPy/aiumina composite filler. The greatly enhanced performance and the low-voltage-operational characteristic of the IPMCs bearing the PPy/alumina filler were attributed to the synergic effects of the neighboring alumina moiety near the PPy moiety involving electrochemical redox reactions.

Dynamic Modeling and Design of Finger Exoskeleton Using Polymer Actuator (고분자 구동체를 이용한 손가락 외골격기구의 설계 및 동력학적 모델 개발)

  • Jeong, Gwang-Hun;Kim, Yoon-Jeong;Yoon, Bye-Ri;Wang, Hyuck-Sik;Song, Dae-Seok;Kim, Sul-Ki;Rhee, Kye-Han;Jho, Jae-Young;Kim, Dong-Min;Lee, Soo-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.717-722
    • /
    • 2012
  • This paper presents the design and dynamic model of the finger exoskeleton actuated by Ionic Polymer Metal Composites (IPMC) to assist a tip pinch task. Although this exoskeleton will be developed to assist 3 degree-of-freedom motion of each finger, it has been currently made to perform the tip pinch task using 1 degree-of-freedom mechanism as the first step. The six layers of IPMC were stacked in parallel to increase the low actuation force of IPMC. In addition, the finger dummy was manufactured to evaluate the performance of the finger exoskeleton. The pinch task experiments, which were performed on the finger dummy with the developed exoskeleton, showed that the pinch force close to the desired level was obtained. Moreover, the dynamic model of the exoskeleton and finger dummy was developed in order to perform the various analyses for the improvement of the exoskeleton.

Preparation and Actuation Performance of Ionic Polymer-Metal Composite Actuators Based on Nafion-Alumina Composite Membranes (나피온-알루미나 복합막을 사용한 이온성 폴리머-금속 복합체 작동기의 제작 및 성능 평가)

  • Lee, Jang-Woo;Kim, Woo-Sung;Yoo, Young-Tai
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.377-383
    • /
    • 2009
  • Ionic polymer-metal composite (IPMC) actuator generates bending actuation via ion/water flux to the cathode side under an electric field. Polyelectrolytes in IPMC should possess high water-retention capability, proton conductivity, and Young's modulus. In this study. for endowing IPMCs with these properties, Nafion-alumina composite membranes containing $\alpha$- or $\gamma$-aluminas of $4{\sim}8$ wt% were prepared. Mechanical moduli of Nafion-alumina composite membranes were $7{\sim}3$ MPa higher than that of Nafion, with the slight decrease in proton conductivity. At DC 3 V. the actuation performance of the Nafion-$\alpha$-alumina (8 wt%)-IPMC was superior to that of the typical Nafion-IPMC. exhibiting 2.7 times the displacement with an enhanced blocking force. The enhanced actuation performance with the Nafion-$\alpha$-alumina composite membranes was attributed to the higher proton conductivity, the elevated ion/water flux, and the lower interfacial electric resistance of platinum electrodes and membrane, compared with those containing $\gamma$-alumina.

SWCNT/Nafion Composite Development for Improvement of Mechanical Properties of IPMC (IPMC의 기계적 특성향상을 위한 SWCNT/Nafion 복합체 개발)

  • Kwon, Hui-June;Lee, Heon-Sang;Lee, Jung-Hwa;Jun, Chan-Bong;Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • From recent research, it has revealed that Electroacitve polymer(EAP) has a physical limitation. Carbon nanotube(CNT) is known as the promising material which has excellent electro-mechanical characteristics and is mostly defect-free. It is expected that a successful synthesis of CNT and Nafion known as a primary material for IPMC would make a great improvement on its electro-mechanic feature. In this paper, we suggest the method of synthesis of CNT with Nafion which improves electro-mechanical characteristic. Using mechanical dispersion with Nafion and Isopropyl Alcohol(IPA), we disperse Single-walled carbon nanotubes(SWCNT). For a uniformly layer of CNT, we used a spray gun on a hot plate by a simplified method. In the result, we fabricated a disperse SWCNT/Nafion composite uniformly.

Development of micro-mold for New Injecton Molder to fabricate Micro-Nano system (Micro-Nano 시스템 제조를 위한 소형 차세대 사출기 개발과 이를 위한 Micro meld의 개발)

  • 황교일;류경주;김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.910-913
    • /
    • 2002
  • Recently, the sensor and actuator are developed with EAP(Electro Active Polymer). Common used of they is close at hand, the bio chip and Lab on a chip are researched. For developed bio and micro system, a researcher applies semiconductor fabrication or make it by his hand. But, this method takes long time and a tolerance is large So they are problem of common used. So In this paper we propose the new inject ion molder and micro mold. The micro mold is different from exist ing mold. In this paper, the fabration of micro mold is introduced to inject.

  • PDF

A STUDY ON PIEZOELECTRIC PROPERTIES OF PVDF AND ITS COPOLYMERS

  • Ansari, Mohd.Zahid;Cho, Chong-Du
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.584-589
    • /
    • 2007
  • Polyvinylidene fluoride (PVDF) is a type of electroactive polymer which shows significant shape change when exposed to electric field. PVDF is generally used as a film sensor in non-destructive evaluation (NDE) of materials. In this study, however, its properties relevant to film actuator are considered. Since most of the electromechanical applications that use PVDF and its copolymers as actuators use their piezoelectric properties, only the piezoelectric properties of PVDF are discussed here. These properties depend mainly on the degree of crystallinity of PVDF. Available data from recent research publications are used to simulate the response of a PVDF bimorph beam on the application of electric field, by a commercial finite element analysis package ANSYS. Finally, the factors that affect mechanical behavior of PVDF bimorph beam are discussed.

  • PDF

Strain Sensor Application using Cellulose Electro-Active Paper (EAPap) (셀룰로오스 기반 Electro-Active Paper (EAPap)를 이용한 변형률 센서 응용)

  • Jang, Sang-Dong;Lee, Sang-Woo;Kim, Joo-Hyung;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.462-465
    • /
    • 2009
  • Cellulose based electro-active paper (EAPap) is a new smart material that has a potential to be used in biomimetic actuator and sensor. Beside of the natural abundance, cellulose EAPap is fascinating with its biodegradability, lightweight, high mechanical strength and low actuation voltage. An actuating mechanism of EAPap is revealed to be the combination of ion migration effect and piezoelectricity. EAPap can generate the electrical current and voltage when the mechanical stress applied due to its electro-mechanical characteristics. In this paper, we investigated the feasibility of EAPap as a mechanical strain sensor.

  • PDF