• 제목/요약/키워드: Polymer Actuator

검색결과 176건 처리시간 0.036초

공기 중에서 동작하는 전도성 고분자 액추에이터용 고체전해질의 특성 분석 밑 실험적 검증 (Characterization and Experimental Verification of Solid Polymer Electrolyte for Conductive Polymer Actuator Operated in Air)

  • 안호정;이승기;박정호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권3호
    • /
    • pp.125-133
    • /
    • 2002
  • In order to fabricate stable conductive polymer actuators which can be operated in air, conductivity and solidity of polymer electrolyte materials have been studied. It was found that Nafion+LiCl is appropriate material to be used for conductive polymer actuator. Using the Nafion+LiCl solid polymer electrolyte, single layer PPy actuators have been fabricated and their deflection was measured. Double layer PPy actuators make up for shortcoming of single layer PPy actuator and displacement and frequency response can be improved by fabrication of double layer PPy actuator. This kind of all-solid-polymer actuator can be used for practical applications.

Adaptive Fuzzy 제어기를 이용한 Embedded 시스템 기반의 기능성 고분자 구동체 다중제어에 관한 연구 (A Study on Multi-Vehicle Control of Electro Active Polymer Actuator based on Embedded System using Adaptive Fuzzy Controller)

  • 김태형;김훈모
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.94-103
    • /
    • 2003
  • In case of environment requiring safety such as human body and requiring flexible shape, a conventional mechanical actuator system does not satisfy requirements. Therefore, in order to solve these problems. a research of various smart material such as EAP (Electro Active Polymer), EAC (Electro Active Ceramic) and SMA (Shape Memory Alloy) is in progress. Recently, the highest preferring material among various smart material is EP (Electrostictive Polymer), because it has very fast response time, powerful force and large displacement. The previous researches have been studied properties of polymer and simple control, but present researches are studied a polymer actuator. An EP (Electostrictive Polymer) actuator has properties which change variably ils shape and environmental condition. Therefore, in order to coincide with a user's purpose, it is important not only to decide a shape of actuator and mechanical design but also to investigate a efficient controller. In this paper, we constructed the control logic with an adaptive fuzzy algorithm which depends on the physical properties of EP that has a dielectric constant depending on time. It caused for a sub-actuator to operate at the same time that a sub-actuator system operation increase with a functional improvement and control efficiency improvement in each actuator, hence it becomes very important to manage it effectively and to control the sub-system which Is operated effectively. There is a limitation on the management of Main-host system which has multiple sub-system, hence it brings out the Multi-Vehicle Control process that disperse the task efficiently. Controlling the multi-dispersion system efficiently, it needs the research of Main-host system's scheduling, data interchange between sub-actuators, data interchange between Main-host system and sub-actuator system, and data communication process. Therefore in this papers, we compared the fuzzy controller with the adaptive fuzzy controller. also, we applied the scheduling method for efficient multi-control in EP Actuator and the algorithm with interchanging data, protocol design.

Development of Modeling and control Methods for Multi-DOF dielectric polymer actuator

  • Jung, M.Y.;Jung, K.M.;Koo, J.C.;Choi, H.R.;Nam, J.D.;Lee, Y.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1225-1228
    • /
    • 2004
  • Principles and mechanism of energy transduction of dielectric polymer materials are well known from the various smart material related publications. However their introduction to industrial actuator applications is limited mainly due to difficulties guarantee controllability and reliability. Most of the previous publications have elaborates energy transduction physics of chunk of polymer while development of construction methods for feasible actuators made of the material is rarely proposed. In the present article, a conceptual design of multi-DOF linear polymer actuator construction that is to be controllable with moderate level of control work os introduced. In addition, numerical models that are developed with a unified energy based approach are presented not only for basic working mechanism analysis of the polymetric soft actuator but for providing analytical foundation to expend the concept toward design of multi-DOF actuator controls.

  • PDF

Adaptive Fuzzy 제어기를 이용한 Embedded 시스템 기반의 기능성 고분자 구동체의 이중제어에 관한 연구 (A Study on Multi-Vehicle Control of Electro Active Polymer Actuator based on Embedded System using Adaptive Fuzzy Controller)

  • 김태형;김훈모
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.307-310
    • /
    • 1997
  • In case of environment requiring safety such as human body and requiring flexible shape, a conventional mechanical actuator system does not satisfy requirement. Therefore, in order to solve this problem, a research of various smart material such as EAP (Electro Active Polymer), EAC (Electro Active Ceramic) and SMA (Shape Memory Alloy) is in progress. Recently, the highest preferring material among various smart material is EP (Electrostictive Polymer), because it has very fast response time, poerful force and large displacement. The previous researches have been studied properties of polymer and simple control, but present researches are studied a polymer actuator. An EP (Electostrictive Polymer) actuator has properties which change variably as shape and environmental condition. Therefore, in order to coincide with a user's purpose, it is important not only to decide a shape of actuator and mechanical design but also to investigate a efficient controller. In this paper, we constructed the control logic with an adaptive fuvy algorithm which depends on the physical properties of EP that has a dielectric constant depending on time.

  • PDF

전도성 고분자를 이용한 마이크로 액추에이터 제작 (Fabrication of Microactuators Using Conductive Polymer)

  • 이승기;최영;안호정;박정호;심우영;양상식
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권12호
    • /
    • pp.698-704
    • /
    • 2000
  • Mechanical performances of beam shaped and bridge-shaped conductive polymer actuator have been measured and analyzed varying polymerization conditions and operating conditions such as applied current, polymerizing time, frequency of the current and kinds of electrolytes. For the application of conductive polymer actuator to micropump, the diaphragm structure has been fabricated, which is composed of polypyrrole, solid polymer electrolyte and parylene. Measured results how the possibility of the practical application of conductive polymer actuator.

  • PDF

전도성 고분자를 이용한 BENDING 액츄에이터 (Bending Actuator Using Conducting Polymer)

  • 나승우;김명순;이승기;이상훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1997-2000
    • /
    • 1996
  • A strip-type bending actuator using perfluoro sulfonic acid film ($Nafion^{(R)}$ 117, Du Pont), which is a kind of conducting polymer, fabricated and characterized. Conducting polymer is a useful material as an actuator due to the simple structure, fabrication method and low driving voltage. Experimental results show that the fabricated bending actuator has about ${\pm}10^{\circ}$ of bending angle at 4 V and fast response, which means that the conducting polymer can be used practically as actuator material.

  • PDF

Enhanced Behaviors of Ionic-Polymer Metal Composite (IPMC) Actuator Coupled with Polymeric Anion-doped Polypyrrole Thin Film

  • Hong, Chan;Nam, Jae-Do;Tak, Yong-Sug
    • 전기화학회지
    • /
    • 제9권4호
    • /
    • pp.137-140
    • /
    • 2006
  • In order to overcome the weak actuation and relaxation problems during the deformation of IPMC actuator, polymeric anion (polystyrenesulfonate)-doped polypyrrole(Ppy(PSS)) was electrodeposited onto IPMC actuator. Electrochemical quartz crystal microbalance study showed that hydrated cations were instilled into Ppy(PSS) film and polymeric-anion dopants introduced during polymerization were not expelled. Ppy(PSS)-coated IPMC actuator formed two electrode/electrolyte interfaces, Pt/nafion and Ppy(PSS)/bulk solution, and additive volume expansion phenomena at interfaces induced the large deformation compensating the relaxation of actuation by back diffusion of water.

Compliant Micro Actuator made from Dielectric Polymer

  • Sunghwi Cho;Sungmoo Ryew;Jeon, Jae-Wook;Kim, Hunmo;Nam, Jae-Do;Park, Hyoukryeol;Ryutaro Maeda
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.103.2-103
    • /
    • 2001
  • In this paper, we discusses compliant actuators those are made of electrostrictive polymer. Electrostrictive polymer actuators(EPAs) are based on the deformation of dielectric elastomer polymer in the presence of an electric field. We address actual design and fabrication method of an actuator using the electrostrictive polymer. We have developed primitive prototypes of the actuator using elastic restoring force. And they actuators have 1 to 3 DOF, 1 DOF actuators are simple linear actuators and 3 DOF actuator has linear actuation and steering capability. They are simple in structure with lightweight, high trust, force and large stroke. Basic design principles and experimental procedures for confirming their performance will be introduced.

  • PDF

Improved controllability of a fully dehydrated Selemion actuator

  • Tamagawa, Hirohisa;Nogata, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.96-100
    • /
    • 2004
  • Ion exchange polymer membrane in the dehydrated state was found to exhibit bending upon a small applied voltage, although the investigations on the hydrated ion exchange polymer membrane bending behavior have been performed quite intensively for more than a decade for the purpose of producing a practical polymer actuator. Our investigation on the dehydrated ion exchange polymer membrane has revealed that its bending direction is perfectly controllable by the polarity control of applied voltage and the degree of its bending curvature is also almost completely determined by the control of duration time of voltage application on it, while the hydrated ion exchange polymer membranes lack of such properties. Furthermore the longevity of dehydrated ion exchange polymer membrane sustaining such a highly controllable properties has been found quite longer than that of the hydrated ion exchange polymer membrane.

  • PDF

폴리아닐린/탄소나노튜브 폴리머 액츄에이터의 모델링, 시뮬레이션 및 제어 (Modeling, Simulation, and Control of a Polyaniline/Carbon-Nanotube Polymer Actuator)

  • 손기원;이병주;김선정;김인영;김선일
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권3호
    • /
    • pp.348-354
    • /
    • 2007
  • Polymer actuators, which are also called as smart materials, change their shapes when electrical, chemical, thermal, or magnetic energy is applied to them and are useful in wide variety of applications such as microelectromechanical systems (MEMS), machine components, and artificial muscles. For this study, Polyaniline/carbon-nanotube polymer actuator that is one of electroactive polymer actuators was prepared. Since the nonlinear phenomena of hysteresis and a step response are essential considerations for practical use of polymer actuators, we have investigated the movement of the Polyaniline/carbon-nanotube polymer actuator and have developed an integrated model that can be used for simulating and predicting the hysteresis and a step response during actuation. The Preisach hysteresis model, one of the most popular phenomenological models of hysteresis, were used for describing the hysteretic behavior of Polyaniline/carbon-nanotube polymer actuator while the ARX method, one of system identification techniques, were used for modeling a step response. In this paper, we first expain details in preparation of the Polyaniline/carbon-nanotube polymer then present the mathematical description of our model, the extraction of the parameters, simulation results from the model, and finally a comparison with measured data.