• Title/Summary/Keyword: Polygonal grain

Search Result 27, Processing Time 0.019 seconds

A Study on the Effect of Heat Input on the Microstructure and Toughness of Weldments Made by Domestic Flux Cored Wires. (국산 플럭스 코어드 와이어 용접에서 입열량이 용접부의 미세조직과 인성에 미치는 영향)

  • 고진현;국정한
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.57-69
    • /
    • 1993
  • In the present study, the microstructure and Charpy V notch toughness of multipass $CO_2$ FCA weldment in three different heat inputs(1-3KJ/mm)were investigated. The weldments using two different domestic FCAW wires(AWS E71T-1 and E71T-5 equivalent) in C-Mn steel were chemically analysed. The following conclusions can be inferred. 1. T-1 wire Showed a stable arc transfer, less spatter and harsh, a better bead spreading and easy slag removal, whereas T-5 wire suffered from the arc stability, which tended to increase spatter and produce a more convex bead. 2.The microsturctures of the top beads of the weldments in three different heat inputs consisted of coarse-grained boundary ferrite and Widmanstatten ferrite side plate with increasing heat inputs. The modest fraction of acicular ferrite in the two wire weldments was observed in the 2KJ/mm heat input. 3.The fine-grained reheated zones of both welds consisted of a duplex microstructure of polygonal ferrite and second phases. 4. The basic flux weldment of T-5wires showed a higher Charpy impact property than that of T-1 wires because of a higher fraction of acicular ferrite in the weld microstructure.

  • PDF

A Study on the Fiber Laser welding of Ultra-Low Carbon Interstitial Free Steel for Automotive (자동차용 무침입형 극저탄소강의 파이버 레이저 용접에 대한 연구)

  • Oh, Yong-Seok;Shin, Ho-Jun;Yang, Yun-Seok;Hwang, Chan-Youn;Yoo, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.342-349
    • /
    • 2011
  • The purpose of this paper is to describe experimental results about the butt welding and bead on plate welding of the high power Continuous Wave (CW) Fiber laser for Ultra-low carbon Interstitial Free(IF) steel plate for gear part of car. After being welded of the gear parts by the fiber laser and electron beam Microstructures of melting zone had been mixed acicular, granular bainitic, quasi-polygonal and widmanstatten ferrite because of a radical thermal diffusion after welding, difference of critical volume and grain size. As a result of experiment, when gear parts were welded by the fiber laser and electron beam, the fiber laser welding has been stable properties without internal defects more than the electron beam welding. Therefore it has the very advantages of welding high quality and productivity more than conventional melting method. The optimal welding processing parameters for gear parts were as follows : the laser power and welding speed were 3kWatt, 30mm/sec respectively. At this time heat input was $21.2{\times}10^3J/cm^2$.

Effect of Spherodizing Heat-treatment Time on Microstructure and Mechanical Property in Accelerated Cooling-treated API-X70 Steel (가속냉각처리한 API-X70강의 미세조직과 기계적 특성에 미치는 구상화 열처리시간의 영향)

  • Bae, Dong-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.525-530
    • /
    • 2021
  • The purpose of this study was to investigate the effect of spherodizing heat treatment holding time on the microstructure and mechanical properties of the accelerated cooling-treated API X70 steel, which is mainly used as a structural material for line pipe steel for natural gas pipes. The accelerated cooling-treated API X70 steel was spherodizing treated at 700℃ for 12~48 h. The microstructure was observed using an OM and a FEG-SEM, and mechanical properties were obtained by tensile test. The microstructure of the API X70 steel was banded in the hot rolling direction, and the polygonal ferrite(PF) adjacent to pearlite(P) has mainly a fine size, and coarse PF and fine acicular ferrite were formed in the middle of P and P. As the spherodizing treatment time increased, the number of carbide particles decreased and its distribution interval increased, and the ferrite grain size was coarsened. The tensile strength decreased and the ductility increased with spherodizing treatment time, and the yield point elongation was disappeared in a stress-strain curve after the spherodizing treatment.

A Study on the Stretch-flangeability of Hot-Rolled High Strength Steel with Ferrite-Bainite Duplex Microstructure (페라이트-베이나이트 복합조직 고강도 열연강판의 신장플랜지 특성에 관한 연구)

  • Cho, Yeol-Rae;Chung, Jin-Hwan;Koo, Hwang-Hoe;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1252-1262
    • /
    • 1999
  • The effect of microstructures on the strength-flangeability of Nb bearing hot-rolled high strength steel was investigated in order to improve the strength-flangeability of conventional TS 580MPa grades HSLA steel for the automotive wheel disc. The low temperature coiling method using 3-step controlled cooling pattern after hot rolling was effective to produce the Nb-bearing high strength steel with the polygonal ferrite and bainite duplex microstructures. It was suggested that the suppressed precipitation of grain boundary cementites and the decreased hardness difference between ferrite matrix and bainite cause the excellent stretch-flangeability of ferrite-bainite duplex microstructure steel. Therefore, the formation and propagation of microcracks were suppressed relative to the conventional HSLA steel with ferrite and pearlite microstructure. In addition, the elongation was improved as compared with that of hot-rolled steel sheets using conventional early cooling pattern because the volume fraction of polygonal ferrite was increased.

  • PDF

Effect of Welding Parameters on Bead Shape, Microstructure and Hardness of Galvanized Steel Pipe Welds with GMAW (아연도금강관의 GMAW에서 용접변수가 비드형상과 미세조직과 경도에 미치는 영향)

  • Lim, Young-Min;Lee, Wan Kyu;Kim, Se-Cheol;Koh, Jin-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.535-541
    • /
    • 2013
  • The present study was carried out to investigate the effects of welding parameters such as current, voltage and shielding gases on the bead shape, microstructures and hardness. It was confirmed that bead height was lowered and bead depth was increased with increasing voltages while height, depth and width of beads increased with welding currents. The hardness of weld metals with Ar+10% $O_2$ and Ar+20% $CO_2$ was low due to the formation of grain boundary and polygonal ferrites while that of weld metals with Ar+2% $O_2$ was high due to the presence of acicular, bainitic and sideplate ferrites.

Variation of Mechanical Properties according to Microstructure of High Strength Steel Weld Metal (고강도강 용접금속의 미세조직에 따른 기계적 특성 변화 연구)

  • Lee, Jae-Hee;Kim, Sang-Hoon;Yoon, Byung-Hyun;Jung, Hong-Chul;Lee, Chang-Hee
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.70-70
    • /
    • 2010
  • In the present study, to estimate the mechanical properties of 800 MPa grade weld metal, welding was carried out using 800 and 600 MPa grade flux cored arc welding (FCAW) consumable and characteristics of the weld metals were investigated. The chemical composition of weld metals was investigated by an optical emission spectroscopy (OES) method. The microstructure of weld metals was analyzed by optical microscopy (OM) and secondary electron microscopy (SEM). The compositions and sizes of inclusions which are the dominant factors for the nuclei of acicular ferrite were analyzed by an transmission electron microscopy (TEM). In addition, mechanical properties of the weld metals were evaluated through tensile tests and charpy impact tests. Mostly the acicular ferrite phase which has high strength and toughness was observed. The 600 MPa grade weld metal was consisted of 75% acicular ferrite and 25% ferrite which was formed at high temperature (grain boundary ferrite, widmanstatten ferrite, polygonal ferrite). However, the 800 MPa grade weld metal was composed of about 73% acicular ferrite and 27% low temperature phase (bainite, martensite). Toughness was considerably decreased due to the increase of tensile strength (from 600 MPa to 800 MPa). The sizes of inclusions which were observed in both weld metal were $0.4{\sim}0.8\;{\mu}m$, it is effective size to form acicular ferrite.

  • PDF

The Structural and Optical Properties with Composition Variation of CdxZn1-xO Thin Films Prepared by Sol-Gel Method (Sol-Gel 방법으로 제작된 CdxZn1-xO 박막의 조성비에 따른 구조적 및 광학적 특성)

  • Cheon, Min Jong;Kim, Soaram;Nam, Giwoong;Yim, Kwang Gug;Kim, Min Su;Leem, Jae-Young
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.583-588
    • /
    • 2011
  • $Cd_xZn_{1-x}O$ thin films were grown on quartz substrates by using the sol-gel spin-coating method. The mole fraction, x, of the $Cd_xZn_{1-x}O$ thin films was controlled from 0 to 1 by changes in the content ratio of the cadmium acetate dehydrate [$Cd{(CH_3COO)}_2{\cdot}2H_2O$] and zinc acetate dehydrate [$Zn{(CH_3COO)}_2{\cdot}2H_2O$]. The effects of the mole fraction on the morphological, structural, and optical properties of the $Cd_xZn_{1-x}O$ thin films were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-visible spectroscopy. The $Cd_xZn_{1-x}O$ thin films exhibited the polygonal surface morphology and their grain size was increased ranging from 42.1 to 63.9 nm with the increase in the mole fraction. It was observed that the absorption bandgap of the $Cd_xZn_{1-x}O$ thin films decreased from 3.25 to 2.16 eV as the mole fraction increased and the Urbach energy ($E_U$) values changed inversely to the optical bandgap of the $Cd_xZn_{1-x}O$ thin films.