• 제목/요약/키워드: Polyglutamine-repeat

검색결과 4건 처리시간 0.015초

Polyglutamine Residues from Machado-Joseph Disease Gene Enhance Formation of Aggregates of GST-Polyglutamine Fusion Protein in E. coli

  • Rhim, Hyang-Shuk;Bok, Kyoung-Sook;Chang, Mi-Jeong;Kim, In-Kyung;Park, Sung-Sup;Kang, Seong-Man
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권6호
    • /
    • pp.663-668
    • /
    • 1998
  • Several neurodegenerative diseases such as Huntington's disease, dentatorubralpallidoluysian atrophy, spinobulbar muscular atrophy, Machado-Joseph disease, and spinocerebellar ataxias type 1 are associated with the aggregation of expanded glutamine repeats within their proteins. Generally, in clinically affected individuals, the expansion of the polyglutamine sequences is beyond 40 residues. To address the length of polyglutamine that forms aggregation, we have constructed plasmids encoding glutathione S-transferase (GST) Machado-Joseph disease gene fusion proteins containing polyglutamine and investigated the formation of aggregates in E. coli. Surprisingly, even $(Gin)_8$, in the normal range as well as $(Gin)_{65}$ in the pathogenic range enhanced the formation of insoluble protein aggregates, whereas $(Ser)_8$, and $(Aia)_8$, did not form aggregates. Our results indicate that the formation of protein aggregates in GST-polyglutamine proteins is specifically mediated by the polyglutamine repeat sequence within their protein structure. Our study may contribute to the understanding of the molecular mechanism of the formation of protein aggregates in neurodegenerative disorders and the development of preventative strategies.

  • PDF

Association of the X-linked Androgen Receptor Leu57Gln Polymorphism with Monomelic Amyotrophy

  • Park, Young-Mi;Lim, Young-Min;Kim, Dae-Seong;Lee, Jong-Keuk;Kim, Kwang-Kuk
    • Genomics & Informatics
    • /
    • 제9권2호
    • /
    • pp.64-68
    • /
    • 2011
  • Monomelic amyotrophy (MA), also known as Hirayama disease, occurs mainly in young men and manifests as weakness and wasting of the muscles of the distal upper limbs. Here, we sought to identify a genetic basis for MA. Given the predominance of MA in males, we focused on candidate neurological disease genes located on the X chromosome, selecting two X-linked candidate genes, androgen receptor (AR ) and ubiquitin-like modifier activating enzyme 1 (UBA1). Screening for genetic variants using patients' genomic DNA revealed three known genetic variants in the coding region of the AR gene: one nonsynonymous single-nucleotide polymorphism (SNP; rs78686797) encoding Leu57Gln, and two variants of polymorphic trinucleotide repeat segments that encode polyglutamine (CAG repeat; rs5902610) and polyglycine (GGC repeat; rs3138869) tracts. Notably, the Leu57Gln polymorphism was found in two patients with MA from 24 MA patients, whereas no variants were found in 142 healthy male controls. However, the numbers of CAG and GGC repeats in the AR gene were within the normal range. These data suggest that the Leu57Gln polymorphism encoded by the X-linked AR gene may contribute to the development of MA.

척수소뇌성 운동실조증 제7형 (Spinocerebellar ataxia 7 (SCA7))

  • 정선용;장석훈;김현주
    • Journal of Genetic Medicine
    • /
    • 제4권1호
    • /
    • pp.22-37
    • /
    • 2007
  • The autosomal dominant spinocerebellar ataxias (SCAs) are a group of neurodegenerative diseases, clinically and genetically heterogeneous, characterized by degeneration of spinocerebellar pathways with variable involvement of other neural systems. At present, 27 distinct genetic forms of SCAs are known: SCA1-8, SCA10-21, SCA23, SCA25-28, DRPLA (dentatorubral-pallidoluysian atrophy), and 16q-liked ADCA (autosomal dominant cerebellar ataxia). Epidemiological data about the prevalence of SCAs are restricted to a few studies of isolated geographical regions, and most do not reflect the real occurrence of the disease. In general a prevalence of about 0.3-2 cases per 100,000 people is assumed. As SCA are highly heterogeneous, the prevalence of specific subtypes varies between different ethnic and continental populations. Most recent data suggest that SCA3 is the commonest subtype worldwide; SCA1, SCA2, SCA6, SCA7, and SCA8 have a prevalence of over 2%, and the remaining SCAs are thought to be rare (prevalence <1%). In this review, we highlight and discuss the SCA7. The hallmark of SCA7 is the association of hereditary ataxia and visual loss caused by pigmentary macular degeneration. Visual failure is progressive, bilateral and symmetrical, and leads irreversibly to blindness. This association represents a distinct disease entity classified as autosomal dominant cerebellar ataxia (ADCA) type II by Harding. The disease affectsprimarily the cerebellum and the retina by the moderate to severe neuronal loss and gliosis, but also many other central nervous system structures as the disease progresses. SCA7 is caused by expansion of an unstable trinucleotide CAG repeat in the ATXN7 gene encoding a polyglutamine (polyQ) tract in the corresponding protein, ataxin-7. Normal ATXN7 alleles contain 4-35 CAG repeats, whereas pathological alleles contain from 36->450 CAG repeats. Immunoblott analysis demonstrated that ataxin-7 is widely expressed but that expression levels vary among tissues. Instability of expanded repeats is more pronounced in SCA7 than in other SCA subtypes and can cause substantial lowering of age at onset in successive generations termed ‘anticipation’ so that children may become diseased even before their parents develop symptoms. The strong anticipation in SCA7 and the rarity of contractions should have led to its extinction within a few generations. There is no specific drug therapy for this neurodegenerative disorder. Currently, therapy remains purely symptomatic. Cellular models and SCA7 transgenic mice have been generated which constitute valuable resources for studying the disease mechanism. Understanding the pathogenetic mechanisms of neurodegeneration in SCAs should lead to the identification of potential therapeutic targets and ultimately facilitate drug discovery. Here we summarize the clinical, pathological, and genetic aspects of SCA7, and review the current understanding of the pathogenesis of this disorder. Further, we also review the potential therapeutic strategies that are currently being explored in polyglutamine diseases.

  • PDF