• Title/Summary/Keyword: Polycyclic aromatic hydrocarbon(PAHs)

Search Result 83, Processing Time 0.023 seconds

Toxicological Effects of Polycyclic Aromatic Hydrocarbon Quinones Contaminated in Diesel Exhaust Particles

  • Kumagai, Yoshito;Taguchi, Keiko
    • Asian Journal of Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.28-35
    • /
    • 2007
  • Accumulated epidemiological and animal studies have suggested that prolonged exposure to ambient particulate matter (PM) is associated with an increased risk of cardiovascular disease and pulmonary dysfunction. While diesel exhaust particles (DEP) contain large variety of compounds, polycyclic aromatic hydrocarbons (PAHs) are a dominant component contaminated in DEP. This article reviews effects of two PAH quinones, 9,10-phenanthraquinone (9,10-PQ) and l,2-naphthoquinone (l,2-NQ), on vascular and respiratory systems.

Atmospheric Behaviors of Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in East Asia

  • Hayakawa, Kazuichi;Tang, Ning;Kameda, Takayuki;Toriba, Akira
    • Asian Journal of Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.19-27
    • /
    • 2007
  • Hazardous polycyclic aromatic hydrocarbons (PAHs) and nitropolycyclic aromatic hydrocarbons (NPAHs) are mainly originated from imperfect combustion of fossil fuels such as petroleum and coal. The consumptions of not only petroleum but also coal have been increasing in the East Asian countries. This review describes the result of international collaboration research concerning characteristics and major contributors of atmospheric PAHs and NPAHs in cities in Japan, Korea, China and Russia. We collected airborne particulates in ten cities in the above countries and six PAHs and eleven NPAHs were determined by HPLC methods using fluorescence and chemiluminescence detections. The total PAH concentrations were much higher in Chinese cities (Fushun, Tieling, Shenyang and Beijing) than those in other cities (Vladivostok, Busan, Kanazawa, Kitakyushu, Sapporo and Tokyo). The total NPAH concentrations were also higher in Chinese cities than those in the other cities. The [NPAH]/[corresponding PAH] ratios are much larger in diesel-engine exhaust particulates than those in coal-burning particulates. The [1-nitropyrene]/[pyrene] ratio of airborne particulates was much smaller in the four Chinese cities, suggesting that coal combustion systems such as coal heaters were the main contributors. On the other hand, the ratios were larger in Korean and Japanese cities, suggesting the large contribution of diesel-engine vehicles.

Simultaneous Determination of Polycyclic Aromatic Hydrocarbons and Their Nitro-derivatives in Airborne Particulates by Using Two-dimensional High-performance Liquid Chromatography with On-line Reduction and Fluorescence Detection

  • Boongla, Yaowatat;Orakij, Walaiporn;Nagaoka, Yuuki;Tang, Ning;Hayakawa, Kazuichi;Toriba, Akira
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.283-299
    • /
    • 2017
  • An analytical method using high-performance liquid chromatography (HPLC) with fluorescence (FL) detection was developed for simultaneously analyzing 10 polycyclic aromatic hydrocarbons (PAHs) and 18 nitro-derivatives of PAHs (NPAHs). The two-dimensional HPLC system consists of an on-line clean-up and reduction for NPAHs in the 1st dimension, and separation of the PAHs and the reduced NPAHs and their FL detection in the 2nd dimension after column-switching. To identify an ideal clean-up column for removing sample matrix that may interfere with detection of the analytes, the characteristics of 8 reversed-phase columns were evaluated. The nitrophenylethyl (NPE)-bonded silica column was selected because of its shorter elution band and larger retention factors of the analytes due to strong dipole-dipole interactions. The amino-substituted PAHs (reduced NPAHs), PAHs and deuterated internal standards were separated on polymeric octadecyl-bonded silica (ODS) columns and by dual-channel detection within 120 min including clean-up and reduction steps. The limits of detection were 0.1-9.2 pg per injection for PAHs and 0.1-140 pg per injection for NPAHs. For validation, the method was applied to analyze crude extracts of fine particulate matter ($PM_{2.5}$) samples and achieved good analytical precision and accuracy. Moreover, the standard reference material (SRM1649b, urban dust) was analyzed by this method and the observed concentrations of PAHs and NPAHs were similar to those in previous reports. Thus, the method developed here-in has the potential to become a standard HPLC-based method, especially for NPAHs.

The High Performance Liquid Chromatography (HPLC) Analysis of Polycyclic Aromatic Hydrocarbons (PAHs) in Oysters from the Intertidal and Subtidal Zones of Chinhae Bay, Korea

  • Ki Seok Lee;11
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.57-68
    • /
    • 1993
  • Polycyclic aromatic hydrocarbons (PAMs) are ubiquitous contaminants in marine environments. PAHs enter estuarine and nearshore marine environment via several routes such as combustion of fossil fuels, domestic and industrial effluents and oil spills PAHs have been the focus of numerous studies in the world because they owe potentially carcinogenic, mutagenic, and teratogenic to aquatic organisms and humans from consuming contaminated food. However, one can hardly find any available data on PAM content in marine organisms in Korea. The present study was carried out in order to determine PAH content in oysters from the intertidal and subtidal zones of Chinhae Bay, which is located in near urban communities and an industrial complex, and the bay is considered to be a major repositories of PAHs. 16 PAHs were analyzed by High Performance Liquid Chromatography (HPLC) with uv/vis and fluorescence detectors in oysters: they are naphthalene (NPTHL), acenaphthylene (ANCPL), acenaphthene (ACNPN), fluorene (FLURN), phenanthrene (PKEN), anthracene (ANTHR), fluoranthene (FLRTH), pyrene (PYRf), benzo(a)anthracene (BaA), chrysene (CHRY), benzo(b)- fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), dibenz(a, h)anthracene (DhA), benzo(g, h, i)peryne (Bghip) and indeno(1, 2, 3, -cd)pyrene (I123cdP). The PAH contents in oysters from the intertidal and subtidal zones of Chinhae Bay ranged from < 0.1 to 992.0 $\mu\textrm{g}$/kg (mean 69.8 $\pm$ 9.8 $\mu\textrm{g}$/kg). Key words . polycyclic aromatic hydrocarbon, high performance liquid chromatography, oyster, Chinhae Bay.

  • PDF

Accumulation and Depuration of Fluoranthene, a Polycyclic Aromatic Hydrocarbon, in Rockfish Sebastes schlegeli (조피볼락 (Sebastes schiegeii)에서 다환성방향족탄화수소 fluoranthene의 축적과 배설)

  • Park Kwan Ha
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.3 s.50
    • /
    • pp.223-228
    • /
    • 2005
  • Rockfish Sebastes schlegeli was exposed to fluoranthene, a ubiquitous polycyclic aromatic hydrocarbon, at 1 and 10 $\mu$g/L for 4 weeks followed by depuration period of 8 weeks. Although the fluoranthene in the p]asma reached only 1.8$\~$1.9 times seawater concentration, it was 6.5 $\~$ 15.7 times higher in the liver, spleen and bile indicating efficient accumulation in the lipid -containing body tissues. When the exposed fish were then maintained in clean water, rapid fluoranthene decline occurred in the initial 2 weeks followed by a rather slow phase. This result suggests that fluoranthene accumulates efficiently provided the existence in the culture medium, but the contaminant disappears rapidly once the chemical source is removed. The fluoranthne residue in fish tissues my be a good indifator for relent PAHs exposure.

Biodegradation of PAHs (Polycyclic Aromatic Hydrocarbon) Using Immobilized Cells of Phanerochaete chrysosporium (고정화 Phanerochaete chrysosporium을 이용한 다환 방향족 화합물의 분해)

  • 서윤수;류원률;김창준;장용근;조무환
    • KSBB Journal
    • /
    • v.15 no.3
    • /
    • pp.247-253
    • /
    • 2000
  • This study was aimed to enhance polycyclic aromatic hydrocarbon(PAHS) biodegradation rate by repeated-batch treatment using immobilized cells of Phanerochaete chrysosporium. In the repeated-batch operations with 30 mg/L of pyrene the maximum degradation rate was 6.58 mg/L day. As the number of batches increased the concentration of immobilized cells significantly decreased and the degradation rate and specific acitivity gradually increased to a maximum value and then decreased. To have PAH degradation activity and cell mass recovered one batch of cultivation using the growth medium instead of the PAH-degrading medium was carried in the course of repeated-batch operations. This maximum degradation rates of pyrene and anthracene were 4.29 and 4.46 mg/L$.$day respectively. Overall the rate of PAH degradation could be enhanced 2.5-30 folds by using immobilized cells compared to the case of using suspended cells.

  • PDF

Complexation of Co-contaminant Mixtures between Silver(I) and Polycyclic Aromatic Hydrocarbons

  • Yim, Soo-Bin
    • Journal of Environmental Science International
    • /
    • v.12 no.8
    • /
    • pp.871-879
    • /
    • 2003
  • The complexation of co-contaminant mixtures between Ag(I) and polycyclic aromatic hydrocarbon (PAH) molecules (naphthalene, pyrene, and perylene) were investigated to quantify the equilibrium constants of their complexes and elucidate the interactions between Ag(I) and PAH molecules. The apparent solubilities of PAHs in aqueous solutions increased with increasing Ag(I) ion concentration. The values, K$_1$ and K$_2$ of equilibrium constants of complexes of Ag(I)-PAHs, were 2.990 and 0.378, 3.615 and 1.261, and 4.034 and 1.255, for naphthalene, pyrene, and perylene, respectively, The K$_1$and K$_2$ values of PAHs for Ag(I) increased in the order of naphthalene < pyrene < perylene and naphthalene < pyrene ≒ perylene, respectively, indicating that a larger size of PAH molecule is likely to have more a richer concentration of electrons on the plane surfaces which can lead to stronger complexes with the Ag(I) ion. For the species of Ag(I)-PAH complexes, a 1:1 Ag(I) : the aromatic complex, AgAr$\^$+/, was found to be a predominant species over a 2:1 Ag(I) : aromatic complex, Ag$_2$Ar$\^$++/. The PAH molecules with four or more aromatic rings and/or bay regions were observed to have slightly less affinity with the Ag(I) ion than expected, which might result from inhibiting forces such as the spread of aromatic $\pi$ electrons over o wide molecular surface area and the intermolecular electronic repulsion in bay regions.

Evaluation of Chemical Analysis Method and Determination of Polycyclic Aromatic Hydrocarbons Content from Seafood and Dairy Products

  • Lee, So-Young;Lee, Jee-Yeon;Shin, Han-Seung
    • Toxicological Research
    • /
    • v.31 no.3
    • /
    • pp.265-271
    • /
    • 2015
  • This study was carried out to investigate contents of 8 polycyclic aromatic hydrocarbons (PAHs) from frequently consumed seafood and dairy products and to evaluate their chemical analysis methods. Samples were collected from markets of 9 cities in Korea chosen as the population reference and evaluated. The methodology involved saponification, extraction with n-hexane, clean-up on Sep-Pak silica cartridges and gas chromatograph-mass spectrometry analysis. Validation proceeded on 2 matrices. Recoveries for 8 PAHs ranged from 86.87 to 103.57%. The limit of detection (LOD) 8 PAHs was $0.04{\sim}0.20{\mu}g/kg$, and limit of quantification (LOQ) of 8 PAHs was $0.12{\sim}0.60{\mu}g/kg$. The mean concentration of benzo[a]pyrene (BaP) was $0.34{\mu}g/kg$ from seafood and $0.34{\mu}g/kg$ from dairy products. The total PAHs concentration was $1.06{\mu}g/kg$ in seafood and $1.52{\mu}g/kg$ in dairy products.

Distribution of Polycyclic Aromatic Hydrocarbon at Kongsfjorden in Spitsbergen, Svalbard Islands (북극 스발바드 군도 스피츠베르겐섬 콩스피요르드에서의 다환 방향족 탄화수소화합물의 분포 특성)

  • Kim, Gi Beom;Ha, Seong Yong;An, In Yeong
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.819-826
    • /
    • 2004
  • In order to elucidate the polycyclic aromatic hydrocarbon concentration and its origin in arctic area, four arctic brown algae (Laminaria saccharina, L. digita, Alaria esculenta, Desmarestia aculeata), one marine invertebrate (Echinoidea) and sediments were collected from Kongsfjorden in Spitsbergen from the late July to early August, 2003. In case of macroalgae, the young blade part above growth point and the old stipes and blades beneath growth point were separated and analyzed for polycyclic aromatic hydrocarbons (PAHs) in an attempt to check the mechanism of uptake in macroalgae to accumulate PAH. There was no difference in PAH concentrations between sampling sites (Stations B and C), species, and blades beneath and above growth point. PAH concentrations in all samples collected in this study were relatively higher than those reported in other areas of arctic. Especially, station C, which is known as an unpolluted area, showed 10 times higher PAH concentration (8,765 ng/g) in sediment than station A (694 ng/g) around harbor. In addition high PAH concentration, station C had very higher proportion of methylated PAH to parent PAH in sediment than station A. Source analysis using PAH isomer pair ratios as indicators showed that Kongsfjorden area seemed to be relatively contaminated with PAH derived from direct petroleum input.

Determination of Polycyclic Aromatic Hydrocarbons in Sesame Oils Derived from Sesame Seeds of Different Places of Origins (원산지가 다른 참깨로 제조한 참기름에서의 polycyclic aromatic hydrocarbons 함량 분석)

  • Seo, Il-Won;Nam, He-Jung;Shin, Han-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.21-26
    • /
    • 2009
  • Polycyclic aromatic hydrocarbon(PAH) contents were evaluated in sesame oils from sesame seeds of different origins and in commercial samples using HPLC with fluorescence detection. The sesame seeds, which had been harvested from India, China, and Korea, were roasted at $250^{\circ}C$ for 25 min, and the commercial sesame oils were purchased from a local market. The recoveries for eight PAHs spiked into the sesame oils ranged from 80.2 to 99.2%. The mean levels of total PAHs in the sesame oils harvested from China, Korea, and India were 3.97, 1.57, and 1.20 ${\mu}g$/kg, respectively. The PAH contents in the commercial sesame oils ranged from 0.79 to 2.15 ${\mu}g$/kg.