• Title/Summary/Keyword: Polycrystalline diamond tool

Search Result 23, Processing Time 0.017 seconds

A Study on the Micro Turning Machinability of A1-Mg Alloy Using Polycrystalline Diamond Tool (다결정 다이아몬드 공구를 이용한 Al-Mg계 합금의 미소선삭가공특성에 관한 연구)

  • Hwang, Joon;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.122-130
    • /
    • 1996
  • In this study, machinability of some aluminum-magnesium alloy are experimentally investigated using polycrystalline diamond tool with turning, and evaluated some independent cutting variables affected micrometal cutting characteristics as cutting force, specific cutting resistance, shear angles. To know the effect of cutting parameters of single point diamond machining, experiments were performed to measure cutting forces for high speed turning of aluminum alloy 6061-T6, SM45C and FC20 with poly- crystalline diamond and coated cemented carbide tool. Independent cutting variables were changed to a variety of cutting speed, feed rate, rake angles, material properties of workpiece and tool. Futhermore. Some useful informations are obtained in this study can guide micro metal cutting of aluminum alloy with diamond tool.

  • PDF

Micro Machining of Titanium Alloy Using Polycrystalline Diamond Tools (PCD 공구를 이용한 티타늄 합금의 미세 가공)

  • Moon, In Yong;Kim, Bo Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.284-291
    • /
    • 2013
  • Micro cutting of titanium alloy by polycrystalline diamond (PCD) tools was studied. Micro electro discharge machining (MEDM) was used to fabricate customized micro shaping tools from PCD blank. The tool was used to machine micro grooves on Ti alloy and the effects of depth of cut and machining length on tool wear, burr and surface roughness were studied. The shaping tool has cutting edge of a few ${\mu}m$. The crater size of the tool surface was increased with increasing capacitance of EDM machining conditions, which was used to control the surface roughness of the machined micro grooves.

Development of Polycrystalline Diamond Tungsten Carbide Combination Circular Saw and Comparison of Tool Wear (PCD 초경 복합 원형 톱 개발과 공구마모 비교)

  • Joo, Chang-Min;Park, Yoon-Ok;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.48-56
    • /
    • 2021
  • Tungsten carbide (WC) circular saws have been widely used to cut plywood. Recently, expensive polycrystalline diamond (PCD) were adopted to extend the tool life of circular saws. This study developed a PCD-WC combination circular saw and compared its performance with that of existing WC and PCD saws. Flank wear of WC saw blades and edge chipping of rectangular PCD was observed during the experiments. The PCD-WC saw replaced half of the chamfered teeth with PCD and applied tough WC for all rectangular teeth. In the experiments, edge chipping was not observed in rectangular WC teeth and the flank wear of chamfered teeth was decreased compared with that of conventional circular saws.

A Prediction of Surface Roughness on the PCD Tool Turned Al5083 by using Regression Analysis (Al5083 PCD 선삭가공에서 회귀분석에 의한 표면거칠기 예측)

  • Lee, Sun-Woo;Lee, Dong-Ju
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.69-74
    • /
    • 2012
  • Surface roughness is widely used as an index for processing degree of accuracy. Recently, regression analysis to predict the machining results are actively used to characterize a cutting operations. In the past, diamond machining had been used for ultra precision cutting operation, but now industrial diamond tools like PCD(Polycrystalline Diamond) have been widely used in ultraprecision machining of nonferrous metals. In this study, the authors focus on the effect of PCD tool property on the surface roughness of Al5083 aluminum alloy after cutting process by CNC operated lathe. Based on the regression analysis approach on a surface roughness data obtained by experiment, predictive analysis of surface roughness is effective to achieve better surface quality.

Performance Characteristics of CVD Diamond Cutting Tools

  • Oles, E.J.;Cackowski, V.J.
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.203-211
    • /
    • 1996
  • CVD diamond tools are becoming more widely used in industry as an economic alternative to polycrystalline diamond (PCD) for machining non-ferrous and non-metallic materials. Although CVD diamond-sheet tools have been on the market for several years, diamond-coated carbide inserts have become available only recently, with the successful resolution of long-standing adhesion problems. Diamond coating morphology on the rake surface of the tool affects chip formation favorably, whereas a microscopically rough, faceted morphology on the flank surface of the tool produces a rough workpiece finish. Workpiece finish can be improved by using a coated tool with a larger nose radius. The tool life provided by diamond-coated tools(~30 $\mu\textrm{m}$ thick) can meet or exceed that of PCD tools, depending on the characteristics of the workpiece material. When using diamond-coated carbide tools in milling, a sharp-edged PCD tool should be used in the wiper position of the cutter to minimize workpiece roughness and burr formation.

  • PDF

Comparison of TiAlN DLC and PCD Tool Wear in CFRP Drilling (CFRP 드릴링에서 TiAlN DLC 코팅과 PCD의 공구마모 비교)

  • Baek, Jong-Hyun;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.77-83
    • /
    • 2022
  • A high-hardness tool material is required to reduce extreme abrasive wear when drilling carbon fiber reinforced plastic (CFRP). Single-crystal diamond is the hardest material in the world, but it is very expensive to be used as a cutting tool. Polycrystalline diamond (PCD) is a diamond grit fused at a high temperature and pressure, and diamond-like carbon (DLC) is an amorphous carbon with high hardness. This study compares DLC coatings and PCD inserts to conventional TiAlN-coated tungsten carbide drills. In fiberglass and carbon fiber reinforced polymer drilling, the tool wear of DLC-coated carbide was approximately half that of TiAlN-coated tools, and slight tool wear occurred in the case of PCD insert end drills.

Hole quality assessment of drilled CFRP and CFRP-Ti stacks holes using polycrystalline diamond (PCD) tools

  • Kim, Dave;Beal, Aaron;Kang, Kiweon;Kim, Sang-Young
    • Carbon letters
    • /
    • v.23
    • /
    • pp.1-8
    • /
    • 2017
  • Polycrystalline diamond (PCD) tools possessing high hardness and abrasive wear resistance are particularly suited for drilling of carbon fiber reinforced plastic (CFRP) composites, where tool life and consistent hole quality are important. While PCD presents superior performance when drilling CFRP, it is unclear how it performs when drilling multi-stack materials such as CFRP-titanium (Ti) stacks. This comparative study aims to investigate drilling of a Ti plate stacked on a CFRP panel when using PCD tools. The first sequence of the drilling experiments was to drill 20 holes in CFRP only. CFRP-Ti stacks were then drilled for the next 20 holes with the same drill bit. CFRP holes and CFRP-Ti stack holes were evaluated in terms of machined hole quality. The main tool wear mechanism of PCD drills is micro-fractures that occur when machining the Ti plate of the stack. Tool wear increases the instability and the operation temperature when machining the Ti plate. This results in high drilling forces, large hole diameter errors, high surface roughness, wider CFRP exit thermal damage, and taller exit Ti burrs.

Fabrication of PCD Micro Tool and its Hybrid Micro Machining (다결정 다이아몬드를 이용한 미세 공구 제작과 이를 이용한 미세 복합 가공)

  • Doan, Cao Xuan;Kim, Bo-Hyun;Chung, Do-Kwan;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.694-700
    • /
    • 2011
  • Since polycrystalline diamond (PCD) has high hardness like diamond, it has been used as tool material for lathe and milling of non-ferrite material. A micro tool fabricated from PCD material can be used for micro machining of hard material such as tungsten carbide, glass, and ceramics. In this paper, micro PCD tools were fabricated by micro EDM (electrical discharge machining) and used for micro grinding of glass. Craters generated on the tool surface by EDM spark work as like grits in grinding process. The effects of tool shapes, tool roughness and PCD grain size were investigated. Also studied was a hybrid process combining electrochemical discharge machining (ECDM) and micro grinding for micro-structuring of glass.

Prediction of Surface Roughness on the PCD Tool Turned Aluminum Alloys by using Regression Analysis (Al합금 PCD 선산가공에서 회귀분석에 의한 표면거칠기 예측)

  • Lee, Sun-Woo;Lee, Dong-Ju
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.41-47
    • /
    • 2012
  • Surface roughness is widely used as an index for processing degree of accuracy. Recently, regression analysis to predict the machining results are actively used to characterize a cutting operations. In the past, diamond machining had been used for ultra precision cutting operation, but now industrial diamond tools like PCD(Polycrystaline Diamond) has been widely used in ultraprecision machining of nonferrous metals. In this study, the authors focus on the effect of PCD tool property on the surface roughness of different types of aluminum alloy after cutting process by CNC operated lathe. Based on the regression analysis approach on a surface roughness data obtained by experiment, predictive analysis of surface roughness is effective to achieve better surface quality.

Study on Cutting Characteristics of WC-Co with Micro Cutting in SEM (SEM 내 마이크로 절삭에 의한 초경합금재의 절삭 특성에 관한 연구)

  • 허성중
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.74-81
    • /
    • 2003
  • This paper describes that the micro-cutting of WC-Co using PCD (Polycrystalline Diamond) and PcBN (Polycrystalline Cubic Boron Nitride) cutting tools are performed with SEM(Scanning Electron Microscope) direct observation method. The purpose of this study is to present reasonable cutting conditions to obtain precise finished surface and machining efficiency. Summary of the results are shown below: (1) The thrust cutting forces tend to increase more than the principal forces as the depth of cut and the cuttlllg speed are increased preferably on orthogonal microcutting. (2) The tool wear in the flank face was formed larger than that in the rake face on orthogonal micro cutting. (3) The wear appearance for PCD tools is abraded by hard WC particles of the work materials, which lead diamond grain to be detached from the bond.