• Title/Summary/Keyword: Polychromatic X-ray attenuation coefficient

Search Result 3, Processing Time 0.018 seconds

Determination of Air-dry Density of Wood with Polychromatic X-ray and Digital Detector

  • Kim, Chul-Ki;Kim, Kwang-Mo;Lee, Sang-Joon;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.836-845
    • /
    • 2017
  • Gravimetric method is usually used to evaluate air-dry density, which is governing physical or mechanical properties of wood. Although it had high evaluation accuracy, the method is time consuming process. Thus, this study was conducted to estimate air-dry density of wood with high accuracy by using polychromatic X-ray and digital detector as alternative of gravimetric method. To quantify polychromatic X-ray projection for evaluating air-dry density, Lambert-Beer's law with the integral value of probability function was used. The integral value was used as weighting factor in the law, and it was determined by conducting simple test at various penetration depths and tube voltage. Mass attenuation coefficient (MAC) of wood also calculated by investigating polychromatic X-ray projection according to species, penetration depth and tube voltage. The species had not an effect on change of MAC. Finally, an air-dry density of wood was estimated by applying the integral value, MAC and Lambert-Beer's law to polychromatic X-ray projection. As an example, the relation of the integral value (${\alpha}$) according to penetration depth (t, cm) at tube voltage of 35 kV was ${\alpha}=-0.00091t{\times}0.0184$ while the regression of the MAC (${\mu}$, $cm^2/g$) was ${\mu}=0.5414{\exp}(-0.0734t)$. When calculation of root mean squared error (RMSE) was performed to check the estimation accuracy, RMSE at 35, 45 and 55 kV was 0.010, 0.013 and $0.009g/cm^3$, respectively. However, partial RMSE in relation to air-dry density was varied according to tube voltage. The partial RMSE below air-dry density of $0.41g/cm^3$ was $0.008g/cm^3$ when tube voltage of 35 kV was used. Meanwhile, the partial RMSE above air-dry density of $0.41g/cm^3$ decreased as tube voltage increased. It was conclude that the accuracy of estimation with polychromatic X-ray and digital detector was quite high if the integral value and MAC of wood were determined precisely or a condition of examination was chosen properly. It was seemed that the estimation of air-dry density by using polychromatic X-ray system can supplant the gravimetric method.

Hybrid model-based and deep learning-based metal artifact reduction method in dental cone-beam computed tomography

  • Jin Hur;Yeong-Gil Shin;Ho Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2854-2863
    • /
    • 2023
  • Objective: To present a hybrid approach that incorporates a constrained beam-hardening estimator (CBHE) and deep learning (DL)-based post-refinement for metal artifact reduction in dental cone-beam computed tomography (CBCT). Methods: Constrained beam-hardening estimator (CBHE) is derived from a polychromatic X-ray attenuation model with respect to X-ray transmission length, which calculates associated parameters numerically. Deep-learning-based post-refinement with an artifact disentanglement network (ADN) is performed to mitigate the remaining dark shading regions around a metal. Artifact disentanglement network (ADN) supports an unsupervised learning approach, in which no paired CBCT images are required. The network consists of an encoder that separates artifacts and content and a decoder for the content. Additionally, ADN with data normalization replaces metal regions with values from bone or soft tissue regions. Finally, the metal regions obtained from the CBHE are blended into reconstructed images. The proposed approach is systematically assessed using a dental phantom with two types of metal objects for qualitative and quantitative comparisons. Results: The proposed hybrid scheme provides improved image quality in areas surrounding the metal while preserving native structures. Conclusion: This study may significantly improve the detection of areas of interest in many dentomaxillofacial applications.

Evaluation of Artifacts by Dental Metal Prostheses and Implants on PET/CT Images: Phantom and Clinical Studies (PET/CT 영상에서의 치과재료에 의한 인공물에 관한 연구)

  • Bahn, Young-Kag;Park, Hoon-Hee;NamKoong, Hyuk;Cho, Suk-Won;Lim, Han-Sang;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.110-116
    • /
    • 2010
  • Purpose: The X-ray attenuation coefficient based on CT images is used for attenuation correction in PET/CT. The polychromatic X-ray beam can introduce beam-hardening artifact on CT images. The aims of the study were to evaluate the effect of dental metal prostheses in phantom and patients on apparent tracer activity measured with PET/CT when using CT attenuation correction. Materials and Methods: 40 normal patients (mean age $54{\pm}12$) was scanned between Jan and Feb 2010. NEMA(National Electrical Manufactures Association) PET $Phantom^{TM}$ (NU2-1994) was filled with $^{18}F$-FDG injected into the water that insert implant and metal prostheses dental cast. Region of interest were drawn in non-artifact region, bright steak artifact region and dark streak artifact region on the same transaxial CT and PET slices. Patients and phantom with dental metal prostheses and dental implant were evaluated the change rate of CT Number and $SUV_{mean}$ in PET/CT. A paired t-test was performed to compare the ratio and the difference of the calculated values. Results: In patients with dental metal prostheses, $SUV_{mean}$ was reduced 19.64% (p<0.05) in the non-steak artifact region than the brightstreak artifact region whereas was increased 90.1% (p>0.05) in the non-steak artifact region than the dark streak artifact region. In phantom with dental metal prostheses, $SUV_{mean}$ was reduced 18.1% (p<0.05) in the non-steak artifact region than the bright streak artifact region whereas was increased 18.0% (p>0.05) in the non-steak artifact region than the dark streak artifact region. In patients with dental implant, $SUV_{mean}$ was increased 19.1% (p<0.05) in the non-steak artifact region than the bright streak artifact region whereas was increased 96.62% (p>0.05) in the non-steak artifact region than the dark streak artifact region. In phantom with dental implant, $SUV_{mean}$ was increased 14.4% (p<0.05) in the non-steak artifact region than the bright streak artifact region whereas was increased 7.0% (p>0.05) in the non-steak artifact region than the dark streak artifact region. Conclusion: When CT is used for attenuation correction in patients with dental metal prostheses, 19.1% reduced $SUV_{mean}$ is anticipated in the dark streak artifact region on CT images. The dark streak artifacts of CT by dental metal prostheses may cause false negative finding in PET/CT. We recommend that the non-attenuation corrected PET images also be evaluated for clinical use.

  • PDF