• Title/Summary/Keyword: Polyaromatic hydrocarbons

Search Result 16, Processing Time 0.029 seconds

Compositional Characterization of Petroleum Heavy Oils Generated from Vacuum Distillation and Catalytic Cracking by Positive-mode APPI FT-ICR Mass Spectrometry

  • Kim, Eun-Kyoung;No, Myoung-Han;Koh, Jae-Suk;Kim, Sung-Whan
    • Mass Spectrometry Letters
    • /
    • v.2 no.2
    • /
    • pp.41-44
    • /
    • 2011
  • Molecular compositions of two types of heavy oil were studied using positive atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Vacuum gas oil (VGO) was generated from vacuum distillation of atmospheric residual oil (AR), and slurry oil (SLO) was generated from catalytic cracking of AR. These heavy oils have similar boiling point ranges in the range of 210-$650^{\circ}C$, but they showed different mass ranges and double-bond equivalent (DBE) distributions. Using DBE and carbon number distributions, aromatic ring distributions, and the extent of alkyl side chains were estimated. In addition to the main aromatic hydrocarbon compounds, those containing sulfur, nitrogen, and oxygen heteroatoms were identified using simple sample preparation and ultra-high mass resolution FT-ICR MS analysis. VGO is primarily composed of mono- and di-aromatic hydrocarbons as well as sulfur-containing hydrocarbons, whereas SLO contained mainly polyaromatic hydrocarbons and sulfur-containing hydrocarbons. Both heavy oils contain polyaromatic nitrogen components. SLO inludes shorter aromatic alkyl side chains than VGO. This study demonstrates that APPI FT-ICR MS is useful for molecular composition characterization of petroleum heavy oils obtained from different refining processes.

Temperature-controlled Restrictor for UV Detection in Capillary Supercritical Fluid Chromatography

  • Pyo, Dong-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1429-1432
    • /
    • 2006
  • Polyaromatic hydrocarbons were separated by a capillary supercritical fluid chromatographic (SFC) column and detected by a UV detector at the wavelength of 280 $\mu$m. The temperature-controlled restrictor was designed for UV detection. The temperature-controlled restrictor is a 20 cm length of deactivated fused silica of 7 mm i.d. which is held right after UV detector of the capillary SFC. The temperature of the restrictor will control the flow rate of the supercritical carbon dioxide mobile phase through the capillary column in SFC. Thus as the pressure in the column is increased from 1500 psi to 4000 psi during a pressure program, the temperature of 7 $\mu$m fused-silica tube can be varied from 100 to 350 ${^{\circ}C}$ to maintain a constant flow rate.

Investigation of Pollution of Polycyclic Aromatic Hydrocarbons and Heavy Metals in Soil near Railway Rails (철도레일 부근 토양의 다환방향족 탄화수소 및 중금속 오염도 조사)

  • Choi, Hyun-Kyung;Yoon, In-Ju;Shin, Tae-Cheon;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.947-956
    • /
    • 2018
  • Trains have been a major means of transport in Korea during these past decades. However, train facilities such as stations and repair shops are contaminated with organic and inorganic substances. There is a high probability of train facility contamination with polyaromatic hydrocarbons (PAHs). This study evaluated the PAH and heavy metal contamination of soil near railroads in the Kyungpook area. A total of 18 soil samples were collected from the railroads and analyzed for 16 PAHs and 6 heavy metal species. The contamination level of the top soil was found to be slightly higher than that of the subsoil for contamination with PAHs. The ratio of carcinogenic PAH concentration to the total PAH concentration was relatively high, with a maximum of 0.9. The toxicity equivalent (TEQ) of the PAHs were 500.6 ng/kg in the topsoil and 355.5 ng/kg in the subsoil. The ratio of low molecular PAHs (LPAHs) to high molecular PAHs (LPAHs) ranged from 6.7 to 29.5; this shows that contamination is primarily due to combustion of fuel rather than due to petroleum. The ratio of phenanthrene to anthracene and the ratio of fluoranthene to pyrene also show that contamination occurred due to combustion for transportation. The heavy metal contamination level was lower than the Korean standard, but higher than the background concentration; this indicates that the soil was affected by the operation of the railways.

Role of Arbuscular Mycorrhizal Fungi in Phytoremediation of Soil Rhizosphere Spiked with Poly Aromatic Hydrocarbons

  • Gamal, H. Rabie
    • Mycobiology
    • /
    • v.33 no.1
    • /
    • pp.41-50
    • /
    • 2005
  • Results from an innovative approach to improve remediation in the rhizosphere by encouraging healthy plant growth and thus enhancing microbial activity are reported. The effect of arbuscular mycorrhizal fungi (Am) on remediation efficacy of wheat, mungbean and eggplant grown in soil spiked with polyaromatic hydrocarbons (PAH) was assessed in a pot experiment. The results of this study showed that Am inoculation enhanced dissipation amount of PAHs in planted soil, plant uptake PAHs, dissipation amount of PAHs in planted versus unplanted spiked soil and loss of PAHs by the plant-promoted biodegradation. A number of parameters were monitored including plant shoot and root dry weight, plant tissue water content, plant chlorophyll, root lipid content, oxido-reductase enzyme activities in plant and soil rhizosphere and total microbial count in the rhizospheric soil. The observed physiological data indicate that plant growth and tolerance increased with Am, but reduced by PAH. This was reflected by levels of mycorrhizal root colonization which were higher for mungbean, moderate for wheat and low for eggplant. Levels of Am colonization increased on mungbean > wheat > eggplant. This is consistent with the efficacy of plant in dissipation of PAHs in spiked soil. Highly significant positive correlations were shown between of arbuscular formation in root segments (A)) and plant water content, root lipids, peroxidase, catalase polyphenol oxidase and total microbial count in soil rhizosphere as well as PAH dissipation in spiked soil. As consequence of the treatment with Am, the plants provide a greater sink for the contaminants since they are better able to survive and grow.

Increase of diesel car raises health risk in spite of recent development in engine technology

  • Leem, Jong Han;Jang, Young-Kee
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.9.1-9.3
    • /
    • 2014
  • Diesel exhaust particles (DEP) contain elemental carbon, organic compounds including Polyaromatic hydrocarbons (PAHs), metals, and other trace compounds. Diesel exhaust is complex mixture of thousands of chemicals. Over forty air contaminants are recognized as toxicants, such as carcinogens. Most diesel exhaust particles have aerodynamic diameters falling within a range of 0.1 to $0.25{\mu}m$. DEP was classified as a definite human carcinogen (group 1) by the International Agency for Research on Cancer at 2012 based on recently sufficient epidemiological evidence for lung cancer. Significant decreases in DEP and other diesel exhaust constituents will not be evident immediately, and outworn diesel car having longer mileage still threatens health of people in spite of recent remarkable development in diesel engine technology. Policy change in South Korea, such as introduction of diesel taxi, may raise health risk of air pollution in metropolitan area with these limitations of diesel engine. To protect people against DEP in South Korea, progressive strategies are needed, including disallowance of diesel taxi, more strict regulation of diesel engine emission, obligatory diesel particulate filter attachment in outworn diesel car, and close monitoring about health effects of DEP.

Stress Expression by the Maternally Transferred Xenobiotic Pollutants in the Reproductive Outputs of the Pacific Oyster, Crassostrea gigas

  • Jo, Qtae;Choy, Eun-Jung;Lee, Su-Jeong;Cho, Yong-Chul;Lee, Chu;Kim, Yoon
    • Journal of Aquaculture
    • /
    • v.18 no.3
    • /
    • pp.200-206
    • /
    • 2005
  • We previously pointed out that the polluted sediment elutriate manifestly affected the early events of reproductive outputs in the Pacific oysters, Crassostrea gigas. A serial dilution of priority xenobiotic sediment elutriates determined by gas chromatography/mass spectrometry (GC/MS) were exposed to gametes of the oyster with different stress burdens to detail the maternal stress transfer to its reproductive outputs. There was an apparent critical concentration over which survival and morphogenesis were significantly affected with more profound damage in morphogenesis. The critical concentration which drives mortality and abnormal morphogenesis of the larvae corresponded to a dilution between 10 and 20% of our elutriate. The adverse effects of the early lives by the xenobiotic exposure over the critical concentration were magnified by the maternal stress from the exposed benzo(a)pyrene (BaP), one of the priority polyaromatic hydrocarbons (PAHs) during the maturation condition. These results indicate that maternal transfer of the xenobiotic compounds from oysters living in the contaminated location might represent a significant adverse effect to their larval population of wild seeds.

Cytotoxicity of Dichloromethane Extracts of Asian Dust

  • Park, Eun-Jung;Kim, Dae-Seon;Yu, Seong-Do;Park, Kwang-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.4
    • /
    • pp.271-278
    • /
    • 2010
  • The appearance of Asian Dust (AD) originating from China and Mongolia during spring each year is a meteorological phenomenon periodically observed in extensive regions of East Asia. According to a previous epidemiological study, AD has adverse effects on both human beings and ecosystems. In this study, we collected total suspension particles (TSP) in the AD period and Non-AD (NAD) period. We extracted organic components from TSP using dichloromethane (DCM), and the polyaromatic hydrocarbons (PAHs) were analyzed. The DCM extracts contained PAHs such as benzo(b)fluoranthene, benzo[g,h,i]perylene, benzo(k)fluoranthene, benzo(a)pyrene, and pyrene. No significant difference was observed in cytotoxicity of the DCM extracts from AD versus NAD when tested on the human bronchial epithelial cells, BEAS-2B. e also examined the toxic mechanisms of AD extracts in cultured BEAS-2B cells and RAW264.7 cells, and in BEAS-2B cells observed increased levels of reactive oxygen species (ROS), decreased glutathione (GSH), and induced caspase-3 activity. Increased expression of oxidative stress-related and inflammation- related genes were also observed in BEAS-2B cells, while nitric oxide (NO) levels were increased in RAW264.7 cells. Taken together, the results suggest that in these cultured cells, AD may induce cytotoxicity through oxidative stress and pro-inflammatory signals.

Biodegradation of Aromatic Compounds by Nocardioform Actinomycetes

  • CHA CHANG-JUN;CERNIGLIA CARL E.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.157-163
    • /
    • 2001
  • Mycolic acid-containing gram-positive bacteria, so called nocardioform actinomycetes, have become a great interest to environmental microbiologists due to their metabolic versatility, multidegradative capacity and potential for bioremediation of priority pollutants. For example, Rhodococcus rhodochrous N75 was able to metabolize 4-methy1catechol via a modified $\beta$-ketoadipate pathway whereby 4-methylmuconolactone methyl isomerase catalyzes the conversion of 4-methylmuconolactone to 3-methylmuconolactone in order to circumvent the accumulation of the 'dead-end' metabolite, 4-methylmuconolactone. R. rhodochrous N75 has also shown the ability to transform a range of alkyl-substituted catechols to the corresponding muconolactones. A novel 3-methylmuconolactone-CoAsynthetase was found to be involved in the degradation of 3-methylmuconolactone, which is not mediated in a manner analogous to the classical $\beta$-ketoadipate pathway but activated by the addition of CoA prior to hydrolysis of lactone ring, suggesting that the degradative pathway for methylaromatic compounds by gram-positive bacteria diverges from that of proteobacteria. Mycobacterium sp. Strain PYR-l isolated from oil-contaminated soil was capable of mineralizing various polyaromatic hydrocarbons (PAHs), such as naphthalene, phenanthrene, pyrene, fluoranthrene, 1-nitropyrene, and 6-nitrochrysene. The pathways for degradation of PAHs by this organism have been elucidated through the isolation and characterization of chemical intermediates. 2-D gel electrophoresis of PAH-induced proteins enabled the cloning of the dioxygenase system containing a dehydrogenase, the dioxygenase small ($\beta$)-subunit, and the dioxygenase large ($\alpha$)-subunit. Phylogenetic analysis showed that the large a subunit did not cluster with most of the known sequences except for three newly described a subunits of dioxygenases from Rhodococcus spp. and Nocardioides spp. 2-D gel analysis also showed that catalase-peroxidase, which was induced with pyrene, plays a role in the PAH metabolism. The survival and performance of these bacteria raised the possibility that they can be excellent candidates for bioremediation purposes.

  • PDF

Structure and Function of the phnF Gene of Pseudomonas sp. Strain DJ77 (Pseudomonas sp. Strain DJ77에서 phnF 유전자의 구조)

  • 이성훈;김성재;신명수;김치경;임재윤;이기성;민경희;김영창
    • Korean Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.92-96
    • /
    • 1997
  • The 6.8 kb Xhol fragment of chromosomal ONA of Pseudomonas sp. 0177 contains the phnDEFG genes involved in the degradation of polyaromatic hydrocarbons and chlorinated aromatics. Here, we report the nucleotide sequence of the ORF encoding a polypeptide consisted of 143 amino acids with a Mr of 13,859. The nucleotide sequence of the ORF is 99% and 68.6% identical to the downstream region of catE of Sphingomonas sp. strain HV3 and the ORF between xylE and xylG of Sphingomonas yanoikuyae Bl, respectively. The deduced amino acid sequence of the PhnF has 62.3% identity with the amino acid encoded hy orfY region of Citrobacter freundii DSM30040. We now confirm that the ORF is located between the catechol 2,3-dioxygenase (C230), phnE, and 2-hydroxymuconic semialdehyde dehydrogenase (2HMSO), phnG.

  • PDF