• Title/Summary/Keyword: Polyaniline (PANI)

Search Result 130, Processing Time 0.032 seconds

Electrorhelological Properties of Monodispersed Submicron-sized Hollow Polyaniline Adipate Suspension

  • Sung, Bo-Hyun;Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.6 no.1
    • /
    • pp.28-32
    • /
    • 2005
  • The electrorheoloRical (ER) fluids are composed of a colloidal dispersion of polarizable particles in insulating oil, and it's the rheological property changes by the applied electric field. These changed are reversible and occur fast within a fewmilliseconds. The ER properties of the ER fluid such as increment of viscosity and yield stress come from the particle chain structure induced by electric fleld. When formulating the ER fluid for a speciflc application, some requirement must besatisfled, which are high yield stress under electric field, rapid response, and dispersion stability. While this characteristic makes valuable ER fluids in valious industrial applications, their lung term and quiescent application has been limited because ofproblems with particle sedimentation. In an effort to overcome sedimentation problem of ER fluids, the anhydrous ER materials of monodispersed hollow polyaniline (PANI) and adipate derivative respectively with submicron-sized suspension providing wide operating temperature range and other advantage were synthesized in a four-step procedure. The ER fluidswere characterized by FT-lR, TGA, DLS, SEM, and TEM. Stability of the suspensions was examined by an UV spectroscopy.The rheological and electrical properties of the suspension were investigated Couette-type rheometer with a high voltagegenerator, current density, and conductivity. And the behavior of ER suspensions was observed by a video camera attached toan optical microscope under 3kV/mm. The suspensions showed good ER properties, durability, and particle dispersion.

A novel preparation of polyaniline in presence electric and magnetic fields

  • Hosseini, Seyed Hossein;Gohari, S. Jamal
    • Advances in materials Research
    • /
    • v.2 no.4
    • /
    • pp.209-219
    • /
    • 2013
  • We have described primary studies on conductivity and molecular weight of polyaniline separately in the electric and magnetic fields when it is used in a field effect experimental configuration. We report further studies on doped in-situ deposited polyaniline. First we have chemically synthesized polyaniline by ammonium peroxodisulfate in acidic aques and organic solutions at different times. Then we measured mass and conductivity and obtained the best time of polymerizations. In continue, we repeated these reactions separately under different electric and magnetic fields in constant time and measured mass and conductivity. The polyaniline is characterized by gel permeation chromatography (GPC), UV-Visible spectroscopy and electrical conductivity. High molecular weight polyanilines are synthesized under electric field, $M_w$ = 520000-680000 g/mol, with $M_w/M_n$ = 2-2.5. The UV-Visible spectra of polyanilines oxidized by ammonium peroxodisulfate and protonated with dodecylbenzenesulfonic acid (PANi-DBSA), in N-methylpyrolidone (NMP), show a smeared polaron peak shifted into the visible. Electrical conductivity of polyanilines has been studied by four-probe method. The conductivity of the films of emeraldine protonated by DBSA cast from NMP are higher than 500 and 25 S/cm under 10 KV/m of potential) electric field and 0.1 T magnetic field, respectively. It shows an enhanced resistance to ageing too. By the next steps, we carried chemical polymerization at the best electric and magnetic fields at different times. Finally, resulted in finding the best time and amount of the fields. The longer polymerization time and the higher magnetic field can lead to degradation of polyaniline films and decrease conductivity and molecular mass.

Hyper Functionalized Nanoparticle Technology and their Applications

  • Lee, Sun-Jong;Jung, Yeon-Jae;Lee, Jung-Min;Lee, Jun-Young;Kim, Jung-Hyun
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.83-84
    • /
    • 2006
  • In aqueous phase, we directly prepared conducting and photoluminescent nano-structured particles by oxidation polymerization. Thiophene(PT) was initiated by $FeCl_{3}/H_{2}O_{2}$ (catalyst/oxidant) combination system. And, polydispersed core-shell poly(styrene/thiophene) and polyaniline(PANI)-coated multi core-shell polystyrene latex particles were successfully prepared by oxidative and radical polymerization. The resulting latex particles have fine improved luminescence and conductive efficiency and dispersion state due to the PT and PANI shell. Hyper functionalized nanoparticle would be expected to increase the processibility in various electrical and electro-optical fields.

  • PDF

Introduction to Pritable Electronics in Radio Frequency (라디오 주파수에서 프린터블 엘렉트로닉스 소개)

  • Jo, Heung-Kuk;Kim, Tae-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.56-57
    • /
    • 2011
  • In this paper, production of antenna or substrate using printing techniques and pattern methods for the semiconductor impurities and SO3H, and its print production process using the step-by-step will be introduced. For mass production problems that can be compared PANI(Polyaniline) is an introduction to the feature. Simple printed substrate is presented.

  • PDF

Fabrication of ITO-Free organic photovoltaic cells by ink-jet printing (잉크젯 기법을 이용한 ITO-Free 유기태양전지 제작)

  • Lee, Ue-Jin;Yoon, Jong-Jin;Kim, Seung-Taek;Cho, Young-June;Lee, Sang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1714-1715
    • /
    • 2011
  • In this work, highly conductive organic solvent-based polyaniline(PANI) was used as an anode in organic photovoltaic cells (OPV) based on poly - (3-hexylthiophene) and [6,6] - phenyl - C60 - butyricacid methyl ester (P3HT : PCBM). The transmittance of the used PANI film were 87.67% and 86.57% at 550nm, and its sheet resistance were 454 ${\Omega}/{\Box}$ and 298 ${\Omega}/{\Box}$. We fabricated ITO-free OPV cells using PANI as an anode, which exhibited an external power conversion efficiency of 2.28% with a result of Jsc of 6.922mA/cm2, Voc of 0.6093V, and FF of 54.10% under an illumination of air mass(AM) 1.5G (100mW/$cm^2$). We used ink-jet printing to deposit buffer layer and active layer on a glass substrate.

  • PDF

Electrical Properties of Polyaniline Blends (폴리아닐린 블랜드의 전기적 특성)

  • Kim, Won-Jung;Kim, Yun-Sang;Kim, Tae-Young;Kim, Jong-Eun;Suh, Kwang-S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.95-97
    • /
    • 2003
  • This paper describes electrical properties such as electrical conduction characteristics and space charge distributions of polyaniline/polystyrene conducting blends. It is interesting to note that the charging current decreased as the temperature was elevated when DC voltage was applied, and also the hopping distance decreased with the increase of temperature for the PANI/HIPS blends, while generally, the hopping distance decreases as the charging current increases. It is exposed that this result is opposed to widely known phenomenon. It could be examined viewing space charge distributions by a pulsed electroacoustic (PEA) method.

  • PDF

Electrorheology and universal yield stress function of semiconducting polymer suspensions

  • Choi, Hyoung-J.;Cho, Min-S.;Kim, Ji-W.
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.4
    • /
    • pp.197-203
    • /
    • 2001
  • We reported on the eletrorheological (ER) properties of several semiconducting polymers including poly (p-phenylene) (PPP), poly (acene quinone) radicals (PAQRs), microencapsulated polyaniline (MPANI) and polyaniline (PANI) those we synthesized. The yield stress dependence on electric field strength for the ER fluids using these semiconducting polymers was mainly examined. The yield stress, which is an important design parameter for ER fluids, was observed to satisfy a universal scaling function, allowing that yield stress data for all the ER fluids examined in this study collapse onto a single curve for a broad range of electric field strengths. The proposed scaling function incorporates both the polarization and conductivity models.

  • PDF

Properties and Trends in Conductive and Insulating Polymers - A Review (전도성 고분자와 절연성 고분자의 특성 및 동향)

  • Ayoung Jang;Jisu Lee;Sang Oh Lee;Jaewoong Lee
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.274-283
    • /
    • 2023
  • Conductive polymers are polymers that conduct electricity like metal conductors. Unlike typical organic polymers, they are polymers that have the electrical, magnetic, and optical properties of metals or semiconductors. For Example, these conductive polymers include Polypyrrole (PPy), Polyaniline (PANI), and Polythiophene (PT). On the other hand, Insulating polymers do not conduct electricity well while providing insulation, which is the opposite of conductivity. With the exception of conductive polymers, most polymers are non-conductors. Insulating polymers include polyimide (PI), polystyrene (PS), and poly(vinyl alcohol) (PVOH, PVA, or PVAl). Although many different polymers exist, we have simply illustrated the properties and recent developments of conductive and insulating polymers, which have opposite properties.

Analysis on Foaming Properties of the PANI added MWNT/PU Films (PANI 첨가 MWNT/PU 필름의 발포특성)

  • Ma, Hye-Young;Choi, La-Hee;Park, Mi-Ra;Kim, Seung-Jin
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.63-63
    • /
    • 2012
  • 전자제품 패키지에 요구되는 쿠션성과 정전방전 기능을 갖는 폴리우레탄 발포 필름의 제조기술을 확립하게 되면 IT산업용에 적용 가능한 필름제품이 개발되어 ESD(정전방전, Electrostatic Dissipation) 성능을 발휘하게 됨으로서 정전기 쇼크에 의한 각종 전자제품의 오작동이나 파손 방지가 가능하게 되어 포장재, 자동차 전자제품의 하우징 등으로 사용될 수 있게 된다. 전도성 고분자인 Polyaniline (PANI)은 다른 여러 고분자와 비교하여 볼 때 다른 유형의 전도성 고분자보다 합성하기가 쉽고 높은 전기전도도를 보임은 물론 열적 및 대기 안정성이 우수하며 가격이 저렴한 장점을 가지고 있다. 본연구는 CNT 나노기술을 응용한 IT산업용 적층간지용 ESD PU발포필름의 제조 가공기술 및 상품화 개발을 수행하고자 방수, 투습방수성을 가지는 유연재료인 폴리우레탄(PU)의 1액형 PU와 DMF에 PANI의 함량을 5, 10, 15, 20, 25, 30wt%로 변화시켜 제조한 PANI/DMF 분산용액과 IPA/MWNT 3wt% 분산용액의 혼용비에 변화를 주어 $120^{\circ}C$에서 2분 건조시켜 그라운드 필름을 제조하였다. 그리고 2액형 PU와 IPA/MWNT 3wt% 분산용액과 발포제를 사용하여 발포온도 $150^{\circ}C$에서 5분간 건조시켜 발포필름을 제조하였으며 이들의 전기적 특성과 역학적 특성을 조사하였다. 제조된 필름의 전기전도성은 전기저항측정기 KEITHLEY 8009를 사용하여 부피저항과, 표면저항을 각각 측정하여 확인하였으며, 필름의 마찰 대전압은 E.S.T-7 마찰 대전압 시험기를 이용하여 표면 마찰 대전압을 측정하여 확인하고, 필름의 물리적 특성은 인장시험기를 이용하여 breaking stress, breaking strain을 측정하였다. 필름단면의 CNT 발포특성은 주사전자현미경(SEM)을 사용하여 측정하여 발포특성과 물성과의 연관성을 확인하였다. 그 결과 필름의 전기적 특성은 PANI가 30% 함량일 때 전반적으로 낮은 저항값이 측정되었으며, 마찰대전압을 측정한 결과 대부분의 시료가 0에 가까운 낮은 값을 가졌다. 필름의 물리적 인장특성은 PANI가 10wt%의 함량일 때 가장 높은 절단강도를 가졌으며 분산용액의 혼용비에 따른 경향성은 나타나지 않았다. 필름의 단면형상을 확인하여 발포특성을 분석한 결과 PANI의 함량에 따라 발포 cell의 크기는 뚜렷한 경향성을 보이지 않았으나 30wt%의 PANI/DMF 분산용액 20part(gr)와 3wt% IPA/MWNT 분산용액 40part(gr)로 제조한 시료의 cell이 가장 균일하고 고르게 발포되었으며, 3.90E+06ohm으로 가장 낮은 표면저항 값으로 측정되어 가장 좋은 전기전도성을 가짐을 확인하였다.

  • PDF

Preparation and Electrochemical Properties of PANI/TiO2 Composites for Supercapacitor Electrodes (수퍼커패시터 전극을 위한 폴리아닐린/TiO2 복합체의 제조 및 전기화학적 성질)

  • Park, Sukeun;Kim, Kwang Man;Lee, Young-Gi;Jung, Yongju;Kim, Seok
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.50-54
    • /
    • 2012
  • In this study, PANI and PANI/$TiO_2$ composites were prepared as electrode materials for a supercapacitor application. Cyclic voltammetry (CV) was performed to investigate the supercapacity properties of these electrodes in an electrolyte solution of 6 M KOH. The PANI/$TiO_2$ composites were polymerized by amount of various ratios through a simple in-situ method. The morphological properties of composites were analyzed by SEM and TEM method. The crystallinity of the composite and $TiO_2$ particle size were identified using X-ray diffraction (XRD). In the electrochemical test, The electrode containing 10 wt% $TiO_2$ content against aniline units showed the highest specific capacitance (626 $Fg^{-1}$) and delivered a capacitance of 286 $Fg^{-1}$ reversibly at a 100 $mVs^{-1}$ rate. According to the surface morphology, the increased capacitance was related to the fact that nano-sized $TiO_2$ particles (~6.5 nm) were uniformly connected for easy charge transfer and an enhanced surface area for capacitance reaction of $TiO_2$ itself.