• Title/Summary/Keyword: Polyamine receptor

Search Result 5, Processing Time 0.017 seconds

A New Acetate Selective Polyamine Receptor Based on Anthracene and 4-Nitrophenyl Group

  • Lee, Sung-Kyu;Kang, Jong-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1228-1230
    • /
    • 2011
  • A new amine receptor 2 utilizing anthracene and nitrophenyl group as signaling group was designed and synthesized. The receptor 2 only utilizes four amine N-H's and 9-anthracenyl hydrogen to bind anions. The receptor 2 can bind anions through hydrogen bonds with a selectivity of $CH_3CO_2^-$ > $H_2PO_4^-$ > $F^-$ > $C_6H_5CO_2^-$ > $Cl^-$ in highly polar solvent such as DMSO without protonation of amine.

Effects of Spermine on Quisqualate-induced Excitotoxicity in Rat Immature Cortical Neurons (흰쥐 미숙 대뇌피질 신경세포에서 Quisqualate로 유발된 흥분성 세포독성에 대한 spermine의 영향)

  • 조정숙
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.535-540
    • /
    • 1999
  • Glutamate (Glu) receptor-mediated excitoxicity has been implicated in many acute and chronic types of neurological disorders. Exposure of mature rat cortical neurons (15-18 days in culture) to the various concentrations of Glu resulted in a marked neuronal death, whereas immature rat cortical neurons (4∼5 days in culture) were resistant to the Glu-induced toxicity. Glu receptor subtype-specific agonists showed differential extent of toxicity in the immature neurons. The neurons treated with NMDA or kainate (KA) did not exhibit damage. However, quisqualate (QA) treatment induced a considerable cell death (36.1%) in immature enurons. The non-NMDA antagonist DNQX did not reduce this response. Interestingly, the QA-induced toxicity was potentiated by spermine in a concentration-dependent manner. Again, the spermine-enhanced damage was not altered by the polyamine antagonist ifenprodil. Taken together, unlike NMDA or KA, QA can induce neurotoxicity in immature rat cortical neurons and the QA-induced toxicity was potentiated by spermine. The lack of antagonizing effects of DNQX and ifenprodil on QA-induced toxicity and the potentiated toxicity by spermine, respectively, implies that both QA receptor and the polyamine site of NMDA receptor may not mediate the neurotoxicity observed in this study, and that a distinct mechanism(s) may be involved in excitotoxicity in immature neurons.

  • PDF

Changes of Glutamate and Polyamine Levels of Hippocampal Microdialysates in Response to Occlusion of Both Carotid Arteries in Mongolian Gerbils (뇌허혈 손상에 있어서 해마-세포외액내 Glutamate와 Polyamine 농도의 변동에 관한 연구)

  • Shin, Kyung-Ho;Kim, Hyung-Gun;Choi, Sang-Hyun;Cho, So-Hyun;Chun, Yeon-Sook;Chun, Boe-Gwun
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.3
    • /
    • pp.273-289
    • /
    • 1994
  • Reversible brain ischemia was produced by occluding both common carotid arteries for 5 min, and the effects of aminoguanidine (AG), $DL-{\alpha}-difluoromethylornithine$ (DFMO), MK-801, and nimodipine (NM) on the ischemia induced changes of the polyamine, glutamate and acetylcholine levels in the hippocampus CA1 subfield and the specific $[^3H]\;MK-801$ binding to the hippocampus synaptosomal membranes were studied with a histological reference of the cresyl violet stained hippocampus. The basal putrescine level $(PT:\;74.4{\pm}8.8\;nM)$ showed a rapid increase (up to 1.7 fold) for 5 min of ischemia, remained significantly increased for 6 h, and then resumed the further increase to amount gradually up to about 3 fold 96 h after recirculation. However, the level of spermidine was little changed, and the spermine level showed a transient increase during ischemia followed by a sustained decrease to about 40% of the preischemic level after recirculation. The increase of PT level induced by brain ischemia was enhanced with AG or MK-801, but it was reduced by DFMO or NM. The basal glutamate level $(GT:\;0.90{\pm}0.l4\;{\mu}M)$ rapidly increased to a peak level of $8.19{\pm}1.14\;{\mu}M$ within 5 min after onset of the ischemia and then decreased to the preischemic level in about 25 min after recirculation. And NM reduced the ischemia induced increase of GT level by about 25%, but AG, DFMO and MK-801 did not affect the GT increase. The basal acetylcholine level $(ACh:\;118.0{\pm}10.5\;{\mu}M)$ did little change during/after brain ischemia and was little affected by AG or NM. But DFMO and MK-801, respectively, produced the moderate decrease of ACh level. The specific $[^3H]\;MK-801$ binding to the hippocampus synaptosomal membrane was little affected by brain ischemia for 5 min. The control value (78.9 fmole/mg protein) was moderately decreased by AG and MK-801, respectively but was little changed by DFMO or NM. The microscopic findings of the brains extirpated on day 7 after ischemia showed severe neuronal damage of the hippocampus, particularly CA1 subfield. NM and AG moderately attenuated the delayed neuronal damage, and DFMO, on the contrary, aggravated the ischemia induced damage. However, MK-801 did not protect the hippocampus from ischemic damage. These results suggest that unlike to the mode of anti-ischemic action of NM, AG might protect the hippocampus from ischemic injury as being negatively regulatory on the N-methyl-D-aspartate (NMDA) receptor function in the hippocampus.

  • PDF

Effects of Agmatine on GABAA Receptor Antagonist-induced Tactile Allodynia (Agmatine이 GABAA 수용체 길항제로 유도한 촉각이질통에 미치는 효과)

  • Lee, Youn Woo;Ishikawa, Toshizo
    • The Korean Journal of Pain
    • /
    • v.21 no.3
    • /
    • pp.173-178
    • /
    • 2008
  • Background: The intrathecal (IT) $GABA_A$ receptor antagonist, bicuculline (BIC), results in tactile allodynia (TA) through disinhibition in the spinal cord. Such disinhibition is considered to be an important mechanism for neuropathic pain. Agmatine, an endogenous polyamine, has a neuro-protective effect in the central nervous system. We investigated the analgesic effects and mechanisms of agmatine action on BIC-induced TA. Methods: Male Sprague-Dawley rats, weighting 250-300 g, were subjected to implantations of PE-10 into the lumbar subarachnoid space for IT drug injection. Five days after surgery, either $10{\mu}l$ of normal saline (NS) or agmatine ($30{\mu}g$ or $10{\mu}g$) in $10{\mu}l$ NS were injected 10 min prior to BIC ($10{\mu}g$) or NMDA ($5{\mu}g$). We assessed the degree of TA (graded 0: no response, 1: mild response, 2: moderate response, 3: strong response) every 5 min for 30 min. Areas under curves and degree of TA were expressed as mean ${\pm}$ SEM. Results were analyzed using one-way ANOVA followed by a Tukey test for multiple comparisons. P < 0.05 was considered significant. Results: IT BIC-induced strong TA reached its peak and plateaued between 10 to 15 min. IT NS-NMDA induced mild transient TA for up to 15 min. Preemptive IT AG attenuated IT BIC-induced TA dose dependently and preemptive IT AG10 completely abolished the IT NMDA-induced TA. Conclusions: Preemptive IT AG attenuated the IT BIC-induced TA through inhibitory actions on postsynaptic NMDA receptor activation. AG might be a viable therapeutic option in the treatment of neuropathic pain.

Adenine attenuates lipopolysaccharide-induced inflammatory reactions

  • Silwal, Prashanta;Lim, Kyu;Heo, Jun-Young;Park, Jong IL;Namgung, Uk;Park, Seung-Kiel
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.4
    • /
    • pp.379-389
    • /
    • 2018
  • A nucleobase adenine is a fundamental component of nucleic acids and adenine nucleotides. Various biological roles of adenine have been discovered. It is not produced from degradation of adenine nucleotides in mammals but produced mainly during polyamine synthesis by dividing cells. Anti-inflammatory roles of adenine have been supported in IgE-mediated allergic reactions, immunological functions of lymphocytes and dextran sodium sulfate-induced colitis. However adenine effects on Toll-like receptor 4 (TLR4)-mediated inflammation by lipopolysaccharide (LPS), a cell wall component of Gram negative bacteria, is not examined. Here we investigated anti-inflammatory roles of adenine in LPS-stimulated immune cells, including a macrophage cell line RAW264.7 and bone marrow derived mast cells (BMMCs) and peritoneal cells in mice. In RAW264.7 cells stimulated with LPS, adenine inhibited production of pro-inflammatory cytokines $TNF-{\alpha}$ and IL-6 and inflammatory lipid mediators, prostaglandin $E_2$ and leukotriene $B_4$. Adenine impeded signaling pathways eliciting production of these inflammatory mediators. It suppressed $I{\kappa}B$ phosphorylation, nuclear translocation of nuclear factor ${\kappa}B$ ($NF-{\kappa}B$), phosphorylation of Akt and mitogen activated protein kinases (MAPKs) JNK and ERK. Although adenine raised cellular AMP which could activate AMP-dependent protein kinase (AMPK), the enzyme activity was not enhanced. In BMMCs, adenine inhibited the LPS-induced production of $TNF-{\alpha}$, IL-6 and IL-13 and also hindered phosphorylation of $NF-{\kappa}B$ and Akt. In peritoneal cavity, adenine suppressed the LPS-induced production of $TNF-{\alpha}$ and IL-6 by peritoneal cells in mice. These results show that adenine attenuates the LPS-induced inflammatory reactions.