• Title/Summary/Keyword: Polyamide fibers

Search Result 53, Processing Time 0.016 seconds

Rheological Properties of Organic Fiber-Reinforced Thermoplastics (유기섬유 강화 열가소성 복합재료의 유변학적 특성)

  • Lee, Yong-Mu;Cha, Yun-Jong;Kim, Seong-Hyeon;Yun, Yeo-Seong;Yun, Ju-Ho;Choe, Hyeong-Gi
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.786-795
    • /
    • 1996
  • The fiber reinforced thermoplastics(FRTP) were prepared with polypropylene fiber(PP) as matrix and polyvinyl alchol(VF), aramid(KF) or polyamide fiber(PAF) as the reinforcing materials using the integrated fiber mixing apparatus. The reinforced thermoplastic sheets were prepared by com¬pression molding and their morphology, rheological and mechanical properties were characterized. In the morphological properties of composites, the wettability of the reinforced thermoplastics were decreased in proportion to the content of fibers. At low angular frequency, the viscosity of PAF /PP and VF/PP composite was increased with the content of reinforced fiber. However at high frequency the viscosity of composite reinforced with 5~20wt% fiber, was shown the reduced values which approaches that of the neat matrix. The mechanical properties of the composite were changed with the content of reinforecd fiber, and VF/PP and KF/PP composite had better properties than PAF/PP system.

  • PDF

The Effect on Treatment Performance of Fiber Filter Under Various Packing-Density and Filtration Velocity (충진밀도와 여과속도가 섬유사 여과기의 처리 성능에 미치는 영향)

  • Im, Jeong-Hoon;Kim, Hyo-Kwan;Lee, Jung-June;Moon, Tae-Sup;Jeong, Min-Ki;Woo, Hae-Jin;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.216-222
    • /
    • 2006
  • A flexile fiber filter developed in Korea was operated to evaluate the effect of packing density and filtration velocity on particle removal. The pilot-scale fiber filter with 40 cm of diameter and 2 m of height was packed with polyamide fibers of which mean diameter was approximately 0.93 mm. While the filtration velocity was maintained at 325 m/hr, the particle removal efficiency was compared with various of packing density from $70kg/m^3\;to\;100kg/m^3$. On the contrary, when the packing density was maintained at $70kg/m^3$, the particle removal efficiency was examined with various filtration velocity from 65 m/hr to 400 m/hr. The filtration pressure increased with the packing-density increase. Below $80kg/m^3$ of packing density, the removal efficiencies of turbidity ad SS were less than 30% and 50%, respectively. At $100kg/m^3$ of packing density, the removal efficiencies of them were nearly 45% and 60% respectively. The filtration pressure increased with the filtration-velocity increase. A better removal efficiency was obtained at a lower filtration velocity, removal efficiency of them were 73% at 65 m/hr. Consequently, The filtration velocity was the more important factor to enhance the particle removal efficiency compared with the packing density in fiber filter.

Improvement of Physical Properties for Carbon Fiber/PA 6,6 Composites (탄소섬유/폴리아마이드 6,6 복합재료의 기계적 물성 향상)

  • Song, Seung A;On, Seung Yoon;Park, Go Eun;Kim, Seong Su
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.365-370
    • /
    • 2017
  • Mechanical properties of carbon fiber reinforced thermoplastic composites (CFRTPs) are affected by various factors. One of the them are poor compatibility of the epoxy sizing layer on the carbon fiber surface with thermoplastic matrix, which causes the inferior interfacial strength between fibers and matrix. In addition, the high molten-viscosity of thermoplastics attributes to the poor impregnation state. Consequently, many voids in the composite materials were generated, which leads to poor mechanical properties of the thermoplastic composites. In this study, the epoxy sizing on the carbon fiber surface was removed and the polyamide 6,6 solution was coated on the de-sized carbon fiber surface to improve the impregnation state and mechanical properties. Interlaminar shear strength (ILSS) of CFRPTs was estimated by implementing short beam shear tests. In addition, flexural strength was measured and the impregnation state of the composites was evaluated by calculating void content.