• 제목/요약/키워드: Poly-carbonate

검색결과 141건 처리시간 0.02초

이산화탄소를 이용한 생분해성 고분자의 합성 (Synthesis of Biodegradable Polymers with Carbon Dioixde)

  • 신상철;신재식;이윤배
    • 한국산학기술학회논문지
    • /
    • 제5권6호
    • /
    • pp.521-525
    • /
    • 2004
  • Poly(ethylene carbonate)(PEC)와 유사한 카보네이트 삼원공중합체의 생분해성이 시험관(in vitro)에서 연구 되었다. PEC는 온실가스 가운데 하나인 이산화 탄소와 ethylene oxide(EO)를 zinc glutarate 촉매로 이용하여 합성되었고, 삼원공중합체는 EO, cyclohexene oxide(CHO)와 이산화 탄소로 만들었다. PEC와 EO를 포함하는 삼원공중합체는 생분해성을 보였으나 poly(propylene carbonate)(PPC)와 poly(cyclohexene carbonate)(PCHC)는 거의 분해되지 않았다. 생분해성은 무게 감소, FT-IR, SEM 등으로 확인하였다.

  • PDF

고리 카보네이트 화합물인 4-Ethyl-1,3-dioxolan-2-one의 새로운 합성 (Synthesis of a Cyclic Carhonate, 4-Ethyl-l,3-dioxolan-2-one)

  • 이윤배
    • 한국산학기술학회논문지
    • /
    • 제5권5호
    • /
    • pp.480-483
    • /
    • 2004
  • cyclic carbonate 가운데 하나인 4-ethyl-1,3-dioxolan-2-one가 poly(butylene carbonate)의 열분해에 의하여 합성되었다. poly(butylene carbonate)는 1,2-Epoxybutane라 이산화탄소로 합성되어졌다. 합성된 4-ethyl-1,3-dioxolan-2-one는 GC-Mass를 이용하여 분석 확인되었다. 이러한 새로운 합성법은 cyclic carbonate 계의 합성에 새로운 정보를 제안할 수 있다.

  • PDF

Poly(styrene carbonate)의 합성 및 열분해에 의한 styrene carbonate의 제조 (Synthesis of Poly(styrene carbonate) and Preparation of Styrene Carbonate by Thermal Degradation)

  • 이윤배;신은정;유진이
    • 공업화학
    • /
    • 제19권1호
    • /
    • pp.133-136
    • /
    • 2008
  • 온실 가스 가운데 하나인 이산화탄소를 줄이기 위한 연구의 일환으로 이산화탄소와 산화 스틸렌을 원료로 하고 zinc glutarate를 촉매로 하여 poly(styrene carbonate)를 합성하였다. 여러 가지 분광학적인(FT-IR, $^1H$-NMR, $^{13}C$-NMR, GC-MS) 분석결과 교대 공중합체임이 확인되었으며, MALDI법에 의하여 분자량($\bar{M}_n$)은 $5.0{\times}10^4$이며, 유리전이온도는 $88^{\circ}C$이고, 융융점은 $240^{\circ}C$로 밝혀졌다. 이 고분자를 열분해하면 고리형 카보네이트인 styrene carbonate가 생성되는 것도 확인하였다.

Cyclic carbonate를 포함하는 polystyrene 유도체의 합성 및 이온전도 특성 (Synthesis and Ionic Conductivity of Polystyrene Derivative Containing Cyclic Carbonate)

  • 김두환;류상욱
    • 전기화학회지
    • /
    • 제18권1호
    • /
    • pp.1-6
    • /
    • 2015
  • 본 실험에서는 cyclic carbonate를 함유하는 styrene 유도체 VBCE를 Williamson 반응으로 합성하였으며 일반적인 조건에서 고분자중합까지 가능함을 보여주었다. 합성한 poly(VBCE)는 PEGMA와의 블렌드를 통하여 고분자전해질로 제조되었으며 이온전도도에 미치는 조성의 영향을 평가하였다. 흥미롭게도 poly(VBCE)의 함량이 0, 1.9, 5.8 mol%로 증가한 경우, 상온 이온전도도는 각각 $4.2{\times}10^{-5}$, $1.45{\times}10^{-5}$, $3.93{\times}10^{-6}S\;cm^{-1}$로 감소하는 경향을 보여주었다. DSC 측정결과, poly(VBCE)의 도입이 PEGMA의 $T_g$에 크게 영향을 주어 도입전 $-50^{\circ}C$에서 $-40^{\circ}C$, $-21^{\circ}C$로 각각 증가되는 현상을 관찰하였다. 이것은 극성 cyclic carbonate의 존재가 이온전도성 기질인 PEGMA의 유동성을 감소시키기 때문으로 이해할 수 있다. 따라서 cyclic carbonate를 고분자기질에 고정시키기 위해서는 기질의 움직임을 감소시키지 않는 분자설계가 필요할 것이다.

에틸렌 카보네이트기를 함유하는 가지형 고체 고분자전해질의 합성 및 물리화학적 특성 (Synthesis and Physicochemical Properties of Branched Solid Polymer Electrolytes Containing Ethylene Carbonate Group)

  • 김두환;류상욱
    • 전기화학회지
    • /
    • 제18권4호
    • /
    • pp.150-155
    • /
    • 2015
  • 본 연구에서는 glycerol-1,2-carbonate와 4-chloromethyl styrene을 함유하는 공중합체를 합성하고, poly(ethylene glycol) methyl ether 와의 Williamson 반응을 이용하여 poly(ethylene glycol)이 가지로 도입됨과 동시에 높은 유전상수의 에틸렌 카보네이트를 함유하는 고분자전해질을 제조하였다. 흥미롭게도 전해질의 상온 이온전도도는 7 mol%의 에틸렌 카보네이트를 포함하는 가지형 고분자에서 $1.75{\times}10^{-5}S\;cm^{-1}$으로 가장 높게 얻어졌고, 이때 [EO]:[Li] 비율의 최적화는 32:1이었다. 또한 에틸렌 카보네이트기의 존재에 의해 고분자전해질의 전기화학적 안정성을 5.5 V까지 확보할 수 있었다.

Poly(styrene carbonate)의 열분해에 의한 고리형 Styrene Carbonate의 합성 (Synthesis of Cyclic Styrene Carbonate via Pyrolysis of Poly(styrene carbonate))

  • 유진이;신은정;구대철;이윤배
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2006년도 춘계학술발표논문집
    • /
    • pp.569-571
    • /
    • 2006
  • 지구의 온난화를 가속시키는 주요물질인 이산화탄소($CO_2$)와 styrene oxide를 Zinc Glutarate를 촉매로 하여 800-1000psi, $750^{\circ}C$에서 반응시켜 합성한 Poly(styrene carbonate)(PSC)를 질소분위기하 $750^{\circ}C$에서 열분해하여 고리형 styrene carbonate를 합성하였다. 생성물은 GC-Mass로 분석하여 확인하였다.

  • PDF

내수성 향상을 위한 수성 폴리우레탄의 합성 및 특성 (Synthesis and Characterization of Waterborne Polyurethane for Water Resistance)

  • 최민지;정부영;천정미;박큰별;천제환
    • 접착 및 계면
    • /
    • 제18권1호
    • /
    • pp.8-12
    • /
    • 2017
  • 본 연구에서는 polyester polyol을 사용한 수성 폴리우레탄의 내수성을 향상시키기 위해 polyester polyol, poly(propylene carbonate) (PPC), 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$), dimethylol propionic acid (DMPA)를 사용하여 수성 폴리우레탄을 합성하였다. PPC를 사용하여 합성된 수성 폴리우레탄의 물성은 FT-IR, GPC, DSC 및 UTM 등을 통해 평가하였다. PPC의 함량이 증가함에 따라 합성된 수성 폴리우레탄의 기계적 물성은 증가하였으며 polyester polyol과 PPC의 비가 9 : 1일 때 가장 높은 값의 내수성을 나타내었다.

리튬 이차전지 고분자 전해질용 다공성 Poly(vinylidene fluoride)/Poly(ethylene carbonate) 막의 특성 연구 (Characterization of Porous Poly(vinylidene fluoride)/Poly(ethylene carbonate) Membranes for Polymer Electrolytes of Lithium Secondary Batteries)

  • Jeon, Jae-Deok;Kwak, Seung-Yeop
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 춘계 총회 및 학술발표회
    • /
    • pp.69-72
    • /
    • 2004
  • So far the most practical polymer electrolytes are gel systems, which contain a polymeric matrix, a lithium salt, and aprotic organic solvents. This has met with success but has had disadvantages that the addition of solvents promotes deterioration of the electrolyte's mechanical properties and increases its reactivity towards the lithium metal anode.[1](omitted)

  • PDF

고분자 주사슬에 카보네이트 관능기가 도입된 새로운 폴리에틸렌 옥사이드 유도체의 합성 및 분석 (Synthesis and Characterization of Poly(ethylene oxide) Derivatives Containing Carbonate Linkages)

  • 최유선;차국찬;서정인;정동준;안정호
    • 폴리머
    • /
    • 제25권6호
    • /
    • pp.759-764
    • /
    • 2001
  • 폴리에틸렌옥사이드 (PEO)의 고유한 성질인 결정성을 저하시키기 위하여 카보네이트 관능기가 도입된 새로운 PEO 유도체를 제조하였다. 이를 위하여 다양한 분자량의 폴리에틸렌글리콜 (PEG)과 디메틸카보네이트 (DMC)로부터 에스터 교환반응에 의하여 메틸카보네이트 관능기가 PEE 말단에 존재하는 전구체를 우선 합성하였으며, 촉매로는 황산을 사용하였다. 얻어진 전구체를 이용하여 진공하에서의 축합 반응을 통하여 PEO 주사슬에 카보네이트 관능기가 도입된 새로운 PEO 유도체, poly(ethylene oxide-carbonate)s를 합성하였으며, 이 때 titanium isopropoxide (TiP)를 촉매로 사용하였다. 반응에 이용한 PEG는 수평균 분자량이 200, 400 그리고 600 g/mol인 것을 사용하였으며, 합성된 새로운 유도체의 구조와 조성을 $^1H-NMR$$^{13}C-NMR$로 확인하였으며, 그들의 열적 특성 및 분자량을 DSC, TGA 및 GPC를 이용하여 분석하였다.

  • PDF

Fabrication and Micropatterning of a Hybrid Composite of Amorphous Calcium Carbonate and Poly(ethylenimine)

  • Lee, Hyun-Sook;Ha, Tai-Hwan;Kim, Hyun-Min;Kim, Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권3호
    • /
    • pp.457-462
    • /
    • 2007
  • Amorphous calcium carbonate (ACC) can readily be prepared using ethanol as the reaction medium and ammonium carbonate as the source of carbon dioxide. Other additives, or any elaborate pH control are not needed to form the initial calcium carbonate precipitate. Ammonia generated from ammonium carbonate maintains the reaction medium in a neutral or weakly basic condition, retarding the crystallization of ACC, while ethanol itself inhibits the dissolution of ACC. The ACC prepared in this way provides a rare opportunity to fabricate molded biomimetic crystals in vitro, but the ACC is too fragile to be fabricated into proper shapes. The malleability of ACC is, however, greatly enhanced by incorporating poly(ethylenimine) (PEI). The ACC/PEI composite can then be fabricated, using a proper mold or template, into mechanically durable biomimetic crystals of definite shape. The ACC in the ACC/PEI composite can further be transformed into vaterite by heating under N2 atmosphere, while the native ACC simply converts into calcite.