• Title/Summary/Keyword: Poly-Ethylene

Search Result 1,094, Processing Time 0.024 seconds

Film Properties of Cold Blending Emulsion Between Poly(vinyl Acetate) and Poly(vinyl acetate-co-ethylene) Emulsion (Poly(vinyl acetate)와 Poly(vinyl acetate-co-ethylene) 에멀젼을 이용한 상온 블렌드 에멀젼의 Film 특성)

  • Kim, Ho-Young;Yoo, Sung-Hee;Choi, Yong-Hae
    • Journal of Adhesion and Interface
    • /
    • v.12 no.4
    • /
    • pp.117-124
    • /
    • 2011
  • This study was made on the poly(vinyl acetate) (PVAc) and poly(vinyl acetate- ethylene) (VAE) emulsion polymer blend which used PVA as protective colloid, and the PVA used as protective colloid was existed in each emulsion film before blend and even in the film after the blend consecutively. It makes us expect excellent adhesive power among particles that form the blend. Emulsion blends with different Tg are important target of concerning, and PVAc/VAE emulsion blend suggested simple and excellent research method. As a result of blend, elongation was lowered by the increase of PVAc, and the plasticizer used in making PVAc affected on the Tg of blend and lowered Tg of VAE emulsion, and the synergy effect of two blends was seen for the tensile strength, thermal resistance, and adhesive strength.

Effect of External Electric Field on the Isothermal Crystallization of Poly(ethylene Oxide) (외부 전장이 Poly(ethylene Oxide)의 등온결정화에 미치는 영향)

  • 김영호;최재원;김갑진
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.271-274
    • /
    • 2001
  • 최근 압전성 및 유전성, 비선형 광학전도성 등과 같은 특성을 갖는 전기전자 및 광기능성 고분자에 대한 연구가 많이 이루어지고 있다[1-2]. 그 중에서 압전 및 초전성을 나타내는 대표적 유기 고분자인 poly(vinylidene fluoride)(PVDF)의 경우 압전성을 향상시키기 위하여 vinylidene. fluoride(VDF)나 vinyl fluoride(VF), trifluoroethylene(TrFE) 등과 공중합시킨 고분자들에 대한 연구가 활발히 진행되어 왔다[3-4]. (중략)

  • PDF

Synthesis and Characterization of Poly(ethylene oxide) Derivatives Containing Carbonate Linkages (고분자 주사슬에 카보네이트 관능기가 도입된 새로운 폴리에틸렌 옥사이드 유도체의 합성 및 분석)

  • 최유선;차국찬;서정인;정동준;안정호
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.759-764
    • /
    • 2001
  • In order to obtain PEO with reduced crystallinity, novel PEO derivatives containing carbonate linkages in the main chain have been synthesized by the reaction of various molecular weight poly (ethylene glycol)s (PEGs) with dimethyl carbonate (DMC) in the presence of $H_2SO_4$ to yield methyl carbonate terminated PEGs, followed by condensation reaction under vacuum in the presence of titanium isopropoxide (TiP) catalyst. The number average molecular weight of PEGs used was in the range of 200 and 600 g/mol. The structure and compositions of the resulting polymers were characterized by $^1$H-NMR and $^{13}C-NMR$. Their thermal behavior and molecular weight were characterized by DSC/TGA and GPC, respectively.

  • PDF

Solubility of Carbon Dioxide in Poly(ethylene glycol) Dimethyl Ether (Poly(ethylene glycol) Dimethyl Ether에 대한 이산화탄소의 용해도)

  • Lee, Eun-Ju;Yoo, Jung-Deok;Lee, Byung-Chul
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.230-236
    • /
    • 2017
  • Solubility data of carbon dioxide ($CO_2$) in poly(ethylene glycol) dimethyl ether (PEGDME) are presented at pressures up to about 50 bar and at temperatures between 303 K and 343 K. The solubilities of $CO_2$ were determined by measuring the bubble point pressures of the $CO_2+PEGDME$ mixtures with various compositions using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. To observe the effect of the PEGDME molecular weight on the $CO_2$ solubility, the $CO_2$ solubilities in PEGDME with two kinds of molecular weight were compared. As the equilibrium pressure increased, the $CO_2$ solubility in PEGDME increased. On the other hand, the $CO_2$ solubility decreased with increasing temperature. When compared at the same temperature and pressure, the PEGDME with a higher molecular weight gave smaller $CO_2$ solubility on a mass fraction and molality basis, but gave greater $CO_2$ solubilities on a mole fraction basis.

Temperature Dependence of the Intrinsic Viscosities for Poly(ethylene oxide)-Water and -Aqueous Urea Systems (Poly(ethylene oxide)-물, Poly(ethylene oxide)-요소 수용액에 대한 고유점도의 온도의존)

  • Jeon, Sang Il;Chang, Gue Dong
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.12
    • /
    • pp.748-755
    • /
    • 1996
  • The effects of temperature on the conformational properties of poly(ethylene oxide) (PEO) in aqueous and aqueous urea solutions are reported. The values of intrinsic viscosity and Huggins coefficients for the PEO dissolved in water and urea/water mixtures (urea concentration 0.2, 1, and 2 M) were obtained using a viscometry method and discussed with respect to the change of water structure. At low temperatures (below 22 $^{\circ}C)$, the PEO-water interaction is favorable and the chain can be extended, whereas at higher temperatures (above 24 $^{\circ}C)$, it is less favorable and the chain can be contracted by a hydrophobic hydration, i.e., the PEO-water interaction becomes to be unfavorable with the increase in temperature. As the urea is added to the system, the PEO chain can be more extended and huged by the perturbation of the structured water originating from the unfavorable PEO-water interaction. The effect of temperature on the intrinsic viscosity values shows an Arrhenius behavior. The activation energies of the viscous flow were obtained and discussed.

  • PDF

Study on compatibility of cellulose ester/poly(ethylene-co-isosorbide terephthalate) solution blends (셀룰로오스 에스터와 Poly(ethylene-co-isosorbide terephthalate) 용액 블렌드의 상용성에 관한 연구)

  • Kim, Yeon-Hee;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3351-3356
    • /
    • 2014
  • Recently, Importance of studying based on biomass materials have increased due to the concern about plastic waste problems. Cellulose acetate butyrate (CAB) is a potential alternative to petroleum-based plastics because of its biodegradable property. Poly(ethylene-co-isosorbide terephthalate) (PEIT) is bio-based plastic, produced by isosorbide monomer. In this study, CAB/PEIT blends were prepared by solution blending to improve thermal stability of CAB. CAB and PEIT were dissolved in chloroform, and then precipitated in ethanol. To evaluate the compatibility of CAB/PEIT blends, the morphology and glass transition behaviors were analyzed by FE-SEM and DMA, respectively. TGA results revealed the improved thermal stabilities of the PEIT-rich and 50:50 compositions. No new or changed crystal structures were observed in the XRD result. Finally, CAB/PEIT solution blends showed good compatibility in overall compositions.

Interchange Reaction Kinetics and Sequence Distribution of Liquid Crystalline Poly(ethylene terephthalate-co-2(3)-chloro-1,4-phenylene terephthalate)

  • Rhee, Do-Mook;Ha, Wan-Shik;Youk, Ji-Ho;Yoo, Dong-Il
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.86-91
    • /
    • 2001
  • Liquid crystalline (LC) poly(ethylene terephthalate-co-2(3)-chloro-1,4-phenylene terephthalate) [copoly(ET/CPT)] was prepared using poly(ethylene terephthalate) (PET) as a flexible spacer, terephthalic acid (TPA), and chlorohydroquinone diacetate (CHQDA). All reactions involved in the copolymerization were investigated using some model compounds: TAP was used for acidolysis, diphenylethyl terephthalate (DPET) for interchange reaction between PET chains, and 야-o-chlorophenyl terephthalate (DOCT) and di-m-chlorophenyl terephthalate (DMCT) for interchange reaction between PET and rigid rodlike segments. Activation energies obtained for the acidolysis of PET with TPA and for interchange reaction of PET with DPET, DOCT, and DMCT were 19.8 kcal/mol, 26.5 kcal/mole, and 45.9 kcal/mole, respectively. This result supports that the copolymerization proceeds through the acidolysis of PET with TPA first and subsequent polycondensation between carboxyl end group and CHQDA or acetyl end group, which is formed from the reaction of CHQDA and TPA. Also, it was found that ester-interchange reaction can be influenced by the steric hindrance. Copoly(ET/CPT)s obtained has ethylene acetate end groups formed from acetic acid hydroxy ethylene end groups and showed almost the random sequence distribution for all compositions.

  • PDF

Complexation of Polyelectroyte-Metal(II) Ion. III. The Complex Formation of Iron(II), Cobalt(II), Nickel(II) and Copper(II) with Branched Poly(ethylene imine) (BPEI) in Aqueous Solution (Polyelectrolyte-Metal(II) 이온의 착물화 (제 3 보). Iron(II), Cobalt(II) Nickel(II) 및 Copper(II)와 Branched Poly(ethylene imine) (BPEI)간의 착물생성)

  • Dong Soo Kim;Tae Sub Cho
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.456-464
    • /
    • 1986
  • The complex formation of branched poly(ethylene imine) (BPEI) with bivalent transition metal ions, such as Fe(II), Co(II), Ni(II) and Cu(II), have been investigated in terms of visible absorption and pH titration methods in an aqueous solution in 0.1M KCl at 30${\circ}$. The stability constants for M(II)-BPEI complexes was calculated with the modified Bjerrum method. The formation curves of M(II)-BPEI complexes showed that Fe(II), Co(II), Ni(II) and Cu(II) ions formed coordination compounds with four, two, two, and two ethylene imine group, respectively. In the case of Cu(II)-BPEI complex at pH 3.4 ∼ 3.8, ${\lambda}_{max}$ was shifted to the red region with a decrease in the acidity. The overall stability constants (log $K_2$) increased as the following order, Co(II) < Cu(II) < Ni(II) < Fe(II).

  • PDF

Electrochemical Characteristics and Physical Properties of Poly(ethylene oxide)-Li based Polymer Electrolyte (Poly(ethylene oxide)-Li계 고분자 전해질의 전기화학적 특성 및 물리적 성질)

  • Kim, Hyung-Sun;Cho, Byung-Won;Yun, Kyung-Suk;Chun, Hai-Soo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.433-442
    • /
    • 1996
  • Electrochemical characteristics and physical properties of polymer electrolyte which immobilized lithium salts such as $LiClO_4$ and $LiCF_3SO_3$ and plasticizers such as ethylene carbonate(EC) and propylene carbonate(PC) in high molecular weight poly(ethylene oxide)[PEO] polymer was investigated. PEO-Li based polymer electrolyte with plasticizers showed ionic conductivity of $10^{-4}S/cm$ at room temperature and high electrochemical stability up to 4.5 V(vs. $Li^+/Li$), so it can be applied to lithium secondary battery. The crystallinity of PEO decreased with the addition of lithium salts and plasticizers, especially $LiClO_4$ and PC showed more effective than and $LiCF_3SO_3$ and EC. Glass transition temperature($T_g$) of polymer electrolyte increased with increasing lithium salt concentration whereas melting temperature ($T_m$) decreased. Polymer electrolyte with plasticizers crystallized at $6^{\circ}C$.

  • PDF