• Title/Summary/Keyword: Poly-Butylene-Terephthalate(PBT)

Search Result 36, Processing Time 0.023 seconds

Polyester Nanocomposite Fibers with Organoclay; Thermo-Mechanical Properties and Morphology of PBT, PET, and PTT (유기화 점토를 이용한 폴리에스테르 나노복합체 섬유; PBT, PET, 그리고 PTT의 열적-기계적 성질 및 모폴로지)

  • Kim Sung Jong;Mun Mu Kyung;Chang Jin-Hae
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.190-197
    • /
    • 2005
  • Nanocomposites of three different polyesters with dodecyltriphenylphosphonium-montmorillonite $(C_{12}PPh-MMT)$ as an organoclay are compared with their thermal properties, mechanical properties, and morphologies. Poly (butylene terephthalate) (PBT), poly(ethylene terephthalate) (PET), and poly(trimethylene terephthalate) (PTT) were used as matrix polymers in the fabrication of polyester nanocomposite fibers. The variations of their properties with organoclay content in the polymer matrix and draw ratio (DR) are discussed. Transmission electron microscopy (TEM) micrographs show that some of the clay layers are dispersed homogeneously within the polymer matrix on the nano-scale, although some clay particles are agglomerated. We also found that the addition of only a small amount of organoclay is enough to improve the thermal stabilities and mechanical properties of the polyester nanocomposite fibers. Even polymers with low organoclay contents $(<5\;wt\%)$ were found to exhibit much higher strength and modulus values than pure polyester fibers. In the cases of all polyester hybrid fibers, the values of the tensile mechanical properties were found to decrease linearly with increasing DR. However, the initial tensile modulus of the PTT hybrid fibers were found to be independent of DR.

Chemical Resistance of Polycarbonate/Poly(butylene terephthalate) Blends (폴리카보네이트/폴리(부틸렌 테레프탈레이트) 블렌드의 내화학성)

  • Lyu, Min-Young;Choi, Dae-Hwan;Kim, Young-Hee;Nah, Chang-Woon
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.237-241
    • /
    • 2010
  • Mechanical characteristics and chemical resistance have been investigated for PC/PBT blends. The changes in mechanical performance of PC/PBT blends was monitored during the treatment with both the PC thinner and general-purpose thinner to figure out the chemical resistance. The PC thinner greatly affected the mechanical properties of PC/PBT blends compared with general-purpose thinner. In the case of PC thinner treatment, the mechanical performance was improved with increased PC content at lower PC content ranges, say below 50%. However the mechanical performance was dropped rapidly at higher PC content ranges due to poor chemical resistance of PC. Transparent pure PC specimen became opaque after chemical treatment with PC thinner, and this can be interpreted by solvent-induced crystallization.

Connector Performance Improvement of Automobile Wiring Harness System using CAE Analysis (CAE 해석을 통한 차량 전장시스템의 커넥터 성능향상)

  • Kim, Jun-Hyung;Lee, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.525-530
    • /
    • 2003
  • Recently an automobile industry is concerned about an automobile wiring harness system. It means that development of component modules is on the increase. An importance of the connector in one part of the modules will be enhanced. A connector is made of P.B.T. (Poly Butylene Terephthalate). PBT is resistant to the high temperature. This paper deals with thermal strain of connector. According as temperature increase, effects of the temperature and thermal strains give an analysis of the deformation using ABAQUS. This apparent thermal strain results actually from the variation of temperature. Being based on this analysis, axiomatic design applies to design parameters of the connector. As compared with CAE analysis, a performance improvement makes certain of the truth of the matter.

  • PDF

Photocrosslinking of Polyester by UV irradiation (자외선 조사에 의한 폴리에스터의 광가교)

  • Yun, Deuk-Won;Jang, Jin-Ho
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.7-7
    • /
    • 2011
  • Poly(ethylene terephthalate)(PET) is one of the most widely used materials in textile industry. It can have a low cost, silk-like handle, and excellent mechanical properties. Low thermal stability of PET had been a common problem limiting its high temperature application. The polyester have been known to have the disadvantage of degradation under ionized irradiation compared to crosslikable polymers such as polyethylene, polypropylene and polystylene. To improve thermal stability of PET, the PET films were photocrosslinked by UV irradiation. A hydrogen-abstractable photoinitiator was used to photocrosslink of PET by continuous UV irradiation. Photoinitiator addition increased the gel fraction. The photocrosslinking was attributed to the recombination of PET radicals generated upon UV irradiation, which was enhanced by the hydrogen abstraction of the PET polymer chains by the added photoinitiator. Also the crosslinked PET showed higher thermal stability and mechanical strength with increasing UV energy. Polyester type films such as poly(ethylene naphthalate)(PEN) and poly(butylene terephthalte)(PBT) were also increased the gel fraction and improved thermal stability and mechanical properties by UV irradiation.

  • PDF

Effects of Blend Composition and Compatibilizer on the Mechanical Properties of Polypropylene/Acrylonitrile-Butadiene-Styrene Blends (블렌드 조성과 상용화제가 폴리프로필렌/ABS 블렌드의 기계적 물성에 미치는 영향)

  • Park, Jung-Hoon;Sung, Yu-Taek;Kim, Woo-Nyon;Hong, John-Hee;Hong, Byeong-Kwon;Yoo, Tae-Wook;Yoon, Ho-Gyu
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.19-24
    • /
    • 2005
  • Polymer blends containing polypropylene (PP) with compatibilizers were prepared using twin screw extruder. Physical properties were investigated using universal test machine (UTM) and Izod impact tester. In the PP/acrylonitrilebutadiene-styrene (ABS) blends, mechanical strength was increased with the addition of PP-g-styrene acryloritrile (PP-g-SAN) compatibilizer, and the ductility was increased with the addition of ethylene-ethyl acrylate-maleic anhydride (E-EAMAH-g-SAN) compatibilizer. For the PP/ABS/ polycarbonate (PC)/Nylon-6,6 blends, impact strength was increased with the addition of ethylene glycidylmethacrylate (E-GMA compatibilizer) up to 0.5 phr. In the case of the PP/ABS/PC/Nylon-6,6/poly(methyl methacrylate) (PMMA)/poly(oxymethylene) (POM)/poly(vinyl acetate) (PVC)/poly(butylene terephthalate) (PBT) blends, mechanical properties were increased by the complex compatibilizing effects of PP-g-SAN, E-EA-MAH-g-SAN and E-GMA, respectively.

Blend Characteristics of PBT, Nylon6,12 and Preparation of PBT/Nylon6,12 Micro Fiber with Core/shell Structure and their Extrusion Conditions (PBT와 Nylon6,12의 블렌드 특성과 core/shell 구조를 갖는 PBT/Nylon6,12 미세모의 제조 및 압출조건)

  • Park, Hui-Man;Lee, Seon-Ho;Kwak, Noh-Seok;Hwang, Chi Won;Park, Sung-Gyu;Hwang, Taek Sung
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1068-1075
    • /
    • 2012
  • Poly(butylene terephthalate) (PBT)/Nylon6,12 core/shell micro fiber were prepared by extrusion molding. To investigate their optimum extrusion conditions, compatibility of PBT/Nylon6,12 blend micro fiber in conformity to their weight ratio and manufacture temperature was explored with SEM morphology and DSC. The alterations in their mechanical properties by extrusion speed were compared and analyzed through a UTM. In comparison with SEM figures, the domain sizes of Nylon6,12 were gradually declined by increasing the extrusion temperature of blends. Furthermore, according to these SEM images, the phase separation between Nylon6,12 domain and PBT matrix became indistinct with increasing of weight percentage of Nylon6,12. In case of DSC, the boundaries of two peaks were almost disappeared when increasing the extrusion temperature and also intervals of each two melting peaks became narrow as increasing the Nylon6,12 ratio. The mechanical properties including tensile strength, elongation, flexural strength and flexural modulus were increased as the increase in the extrusion temperature until $260^{\circ}C$. However, the mechanical properties were actually deteriorated over $260^{\circ}C$. The tensile strength, elongation, flexural strength and flexural modulus at $260^{\circ}C$ were 560 $kg_f/cm^2$, 220%, 807 $kg_f/cm^2$ and 22,146 $kg_f/cm^2$, respectively. These values are more than intermediate values of mechanical properties of PBT and Nylon6,12. These results mean that there is compatibility between PBT and Nylon6,12. Based on the extrusion conditions that produced optimum compatibility of blend, as a result, our group obtained micro fibers with the core/shell structure.