• Title/Summary/Keyword: Poly 3-hexylthiophene

Search Result 126, Processing Time 0.025 seconds

Synthesis of P3HT-b-P4VP via Anionic Polymerization and its Physical Properties in Various Solvents (음이온 중합법 기반 P3HT-b-P4VP 블록공중합체 정밀 합성 및 이의 용매에 따른 물리적 특성 변화 연구)

  • Hwang, Sung Yeon;Park, Jeyoung;Oh, Dongyeop X.
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.336-341
    • /
    • 2018
  • In general, the synthesis of poly(3-hexylthiophene)(P3HT)-based block copolymers requires at least a 4-5 step process. To control the molecular weight, molecular weight distribution, and block ratio, the reaction conversion and time should be monitored. In addition, the reaction scale usually limited to several mg to g was difficult to increase due to the limitations of living radical polymerizations. In this study, we synthesized P3HT-b-poly(4-vinylprydine) (P3HT-b-P4VP) with a final product quantity of > 19 g via a 2-step synthetic method with an anionic polymerization. In this method, the molecular weight and molecular weight distribution of P3HT-b-P4VP can be well controlled without monitoring the reaction conversion. We also studied physical properties of P3HT-b-P4VP depending on different solvent systems, which were investigated by UV-vis spectroscopy, atomic force microscopy, and ultraviolet photoelectron spectroscopy.

Nanoscale Double Interfacial Layers for Improved Photovoltaic Effect of Polymer Solar Cells (이중 나노 계면층을 적용한 고효율 고분자 태양 전지 소자 연구)

  • Lee, Young-In;Park, Byoung-Choo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.70-75
    • /
    • 2011
  • We introduced nanoscale interfacial layers between the PV layer and the cathode in poly (3-hexylthiophene):methanofullerene bulk-heterojunction polymer photovoltaic (PV) cells. The nanoscale double interfacial layers were made of ultrathin poly (oxyethylenetridecylether) surfactant and low-work-function alloy-metal of Al:Li layers. It was found that the nanoscale interfacial layers increase the photovoltaic performance, i.e., increasing short-circuit current density and fill factor with improved device stability. For PV cells with the nanoscale double interfacial layers, an increase in power conversion efficiency of $4.18{\pm}0.24%$ was achieved, compared to that of the control devices ($3.89{\pm}0.08%$) without the double interfacial layers.

Replacement of ITO for efficient organic polymer solar cells (ITO를 대체한 고효율 유기박막 태양전지)

  • Kim, Jae Ryoung;Park, Jin Uk;Lee, Bohyun;Lee, Pyo;Lee, Jong-Cheol;Moon, Sang-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.69.1-69.1
    • /
    • 2010
  • We have fabricated organic photovoltaic cells (OPVs) with highly conductive poly 3,4-ethylenedioxythiophene : poly styrenesulfonate (PEDOT:PSS) layer as an anode without using transparent conducting oxide (TCO), which has been modified by adding some organic solvents like sorbitol (So), dimethyl sulfoxide (DMSO), N-methyl-pyrrolidone (NMP), dimethylformamide (DMF), and ethylene glycol (EG). The conductivity of PEDOT:PSS film modified with each additive was enhanced by three orders of magnitude. According to atomic force microscopy (AFM) study, conductivity enhancement might be related to better connections between the conducting PEDOT chains. TCO-free solar cells with modified PEDOT:PSS layer and the active layer composed of poly(3-hexylthiophene) (P3HT) and phenyl [6,6] C61 butyric acid methyl ester (PCBM) exhibited a comparable device performance to indium tin oxide (ITO) based organic solar cells. The power conversion efficiency (PCE) of the organic solar cells incorporating DMSO, So + DMSO and EG modified PEDOT:PSS layer reached 3.51, 3.64 and 3.77%, respectively, under illumination of AM 1.5 (100mW/$cm^2$).

  • PDF

Investigation on the P3HT-based Organic Thin Film Transistors (P3HT를 이용한 유기 박막 트랜지스터에 관한 연구)

  • Kim, Y.H.;Park, S.K.;Han, J.I.;Moon, D.G.;Kim, W.G.;Lee, C.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.45-48
    • /
    • 2002
  • Poly(3-hexylthiophene) or P3HT based organic thin film transistor (OTFT) array was fabricated on flexible poly carbonate substrates and the electrical characteristics were investigated. As the gate dielectric, a dual layer structure of polyimide-$SiO_2$ was used to improve the roughness of $SiO_2$ surface and further enhancing the device performance and also source-drain electrodes were $O_2$ plasma treated for improvement of the electrical properties, such as drain current and field effect mobility. For the active layer, polymer semiconductor, P3HT layer was printed by contact-printing and spin-coating method. The electrical properties of OTFT devices printed by both methods were evaluated for the comparison. Based on the experiments, P3HT-based OTFT array with field effect mobility of 0.02~0.025 $cm^{2}/V{\cdot}s$ and current modulation (or $I_{on}/I_{off}$ ratio) of $10^{3}\sim10^{4}$ was fabricated.

  • PDF

Energy Transfer and Emission Properties of Organic Electroluminescent Device According to Polymer/Dye Mixing Ratio (고분자/저분자 발광재료의 혼합비에 따른 유기 전계발광 소자의 에너지 전달 및 발광특성)

  • Kim, Ju-Seung;Seo, Bu-Wan;Gu, Hal-Bon;Lee, Kyung-Sup;Park, Bok-Kee
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.997-999
    • /
    • 1999
  • We fabricated white light-emitting organic electroluminescent device which have a mixed single emitting layer containing poly(N-vinylcarbazole)[PVK], tris(8-hydroxyquinoline)aluminum[Alq3] and poly(3-hexylthiophene)[P3HT] and investigated the emission properties of it. We expect to obtain a blue light from PVK, green light from Alq3 and red light from P3HT The fabricated device emits white light over 18V with slight orange light. We think that the energy transfer in a mixed layer occurred from PVK to $Alq_3$ and P3HT resulted in decreasing the blue light intensity from PVK. With mixing of N, N'-diphenyl-N, N'-(3-methylphenyl)-[1,1'-biphenyl]-4, 4'-diamine[TPD], hole transport material, to the emitting layer, the luminance intensity of device was increased 50 times than that of the device which not contain TPD. We find that the efficiency of the white light electroluminescent device can be improved by injecting electron more effectively and blue light need to improve the color purity of white light.

  • PDF

P3HT 박막 저장매체를 가진 비휘발성 메모리 소자의 전기적 특성

  • ;Song, U-Seung;Park, Hun-Min;Yun, Dong-Yeol;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.390-390
    • /
    • 2013
  • 유기물을 이용하여 제작한 비휘발성 메모리 소자는 저전압 구동, 간단한 공정과 플렉서블 모바일에 응용 가능성 때문에 많은 연구가 진행되고 있다. 나노복합체를 사용하여 제작한 비휘발성 메모리 소자의 전기적 특성에 대한 연구가 많이 진행되었으나 고분자를 저장매체로 사용한 메모리 소자의 전기적 특성에 대한 연구는 미흡하다. 본 연구에서 poly (methylmethacrylate) (PMMA)와 poly (3-hexylthiophene) (P3HT) 혼합한 용액을 이용하여 제작한 메모리 소자의 전기적 특성을 연구하였다. P3HT와 PMMA를 같이 클로로벤젠에 용해한 후 초음파 교반기를 사용하여 두 물질을 고르게 섞었다. Indium-tin-oxide가 코팅된 유리 기판 위에 제작한 고분자 용액을 스핀 코팅하고, 열을 가해 용매를 제거하였다. P3HT박막 위에Al을 상부전극으로 열증착하여 소자를 제작하였다. 제작된 소자의 전류-전압(I-V) 측정결과는 같은 전압에서 전도도가 큰 ON 상태와 전도도가 작은 OFF 상태의 큰 ON/OFF 전류비율을 가진 전류의 히스테리시스를 보여주었다. P3HT를 포함하지 않은 소자의 I-V 측정결과는 전류의 히스테리시스 특성이 보이지 않았고 이것은 P3HT 박막이 메모리 특성을 나타내는 저장매체가 됨을 알 수 있었다. 소자의 전류-시간 특성 측정 결과는 전류의 ON/OFF 비율이 시간에 따라 큰 감쇠 현상 없이 오랫동안 지속적으로 유지됨을 보여줌으로 소자의 동작 안정성을 알 수 있었다.

  • PDF

Organic Thin Film Transistors for Liquid Crystal Display Fabricated with Poly 3-Hexylthiophene Active Channel Layer and NiOx Electrodes

  • Oh, Yong-Cheul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1140-1143
    • /
    • 2006
  • We report on the fabrication of P3HT-based thin-film transistors (TFTs) for liquid crystal display that consist of $NiO_x$, poly-vinyl phenol (PVP), and Ni for the source-drain (S/D) electrodes, gate dielectric layer, and gate electrode, respectively The $NiO_x$ S/D electrodes of which the work function is well matched to that of P3HT are deposited on a P3HT channel by electron-beam evaporation of NiO powder. The maximum saturation current of our P3HT-based TFT is about $15{\mu}A$ at a gate bias of -30 V showing a high field effect mobility of $0.079cm^2/Vs$ in the dark, and the on/off current ratio of our TFT is about $10^5$. It is concluded that jointly adopting $NiO_x$ for the S/D electrodes and PVP for gate dielectric realizes a high-quality P3HT-based TFT.

Conducting Polymer Material Characterization Using High Frequency Planar Transmission Line Measurement

  • Cho, Young-Seek;Franklin, Rhonda R.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.237-240
    • /
    • 2012
  • A conducting polymer, poly 3-hexylthiophene (P3HT) is characterized with the metal-insulator-semiconductor (MIS) measurement method and the high frequency planar circuit method. From the MIS measurement method, the relative dielectric constant of the P3HT film is estimated to be 4.4. For the high frequency planar circuit method, a coplanar waveguide is fabricated on the P3HT film. When applying +20 V to the CPW on P3HT film, the P3HT film is in accumulation mode and becomes lossy. The CPW on P3HT film is 1.5 dB lossier than the CPW on $SiO_2$ film without P3HT film at 50 GHz.

Low Spin-Casting Solution Temperatures Enhance the Molecular Ordering in Polythiophene Films

  • Lee, Wi Hyoung;Lee, Hwa Sung;Park, Yeong Don
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1491-1494
    • /
    • 2014
  • High-crystallinity poly(3-hexylthiophene) (P3HT) thin films were prepared by aging the precursor solutions, prepared using a good solvent, chloroform, at low temperatures prior to spin-casting. Lower solution temperatures significantly improved the molecular ordering in the spin-cast P3HT films and, therefore, the electrical properties of field-effect transistors prepared using these films. Solution cooling enhanced the electrical properties by shifting the P3HT configuration equilibrium away from random coils and toward more ordered aggregates. At room temperature, the P3HT molecules were completely solvated in chloroform and adopted a random coil conformation. Upon cooling, however, the chloroform poorly solvated the P3HT molecules, favoring the formation of ordered P3HT aggregates, which then yielded more highly crystalline molecular ordering in the P3HT thin films produced from the solution.

CuO 나노 입자의 PEDOT:PSS 첨가를 통한 유기 태양전지 특성 향상 연구

  • O, Sang-Hun;Jeong, Ju-Hye;Kim, Hyeon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.388-388
    • /
    • 2011
  • 본 연구에서는 CuO 나노 입자를 poly(3,4,-ethylene dioxythiophene):polystyrene sulfonic acid (PEDOT:PSS) 버퍼층에 첨가하여 정공의 이동도를 높임으로서 poly(3-hexylthiophene) (P3HT) as the electron donor and (6.6) phenyl-C61-butyric acid methyl ester (PCBM) 기반의 유기 태양전지를 제작하였다. 일반적으로 PEDOT:PSS 박막은 높은 광 투과율과 상대적으로 우수한 전기전도도를 지닌 p-type의 유기 반도체 물질로써 유기 태양전지의 홀 전도막으로 널리 사용되어지고 있다. 하지만 낮은 홀이동도로 인하여 전달된 정공이 전극까지 전달되는데에 한계점이 있어 본 연구에서 이를 극복하기 위한 방안으로 p-type의 무기 반도체 물질인 CuO 나노 입자를 PEDOT:PSS 박막내에 첨가하여 홀 이동도를 높이고자 하였다. CuO 나노 입자를 PEDOT:PSS 용액에 각각 5, 10, 15, 20mg/ml 의 농도로 첨가하여 유기 태양 전지의 버퍼층으로 사용을 하였다. 이렇게 제작되어진 각각의 PEDOT:PSS 박막과 CuO 나노 입자가 첨가된 PEDOT:PSS 박막의 전기적, 광학적 및 표면 분석을 통하여 CuO 나노 입자가 PEODT:PSS 박막에 미치는 영향을 조사하였고, 이를 통하여 P3HT:PCBM 기반의 유기 태양전지를 제작하여 전기적 특성 분석을 수행하였다.

  • PDF