• 제목/요약/키워드: Poly (ADP-ribose) polymerase-1

검색결과 265건 처리시간 0.022초

G protein-coupled estrogen receptor-1 agonist induces chemotherapeutic effect via ER stress signaling in gastric cancer

  • Lee, Seon-Jin;Kim, Tae Woo;Park, Gyeong Lim;Hwang, Yo Sep;Cho, Hee Jun;Kim, Jong-Tae;Lee, Hee Gu
    • BMB Reports
    • /
    • 제52권11호
    • /
    • pp.647-652
    • /
    • 2019
  • G protein-coupled estrogen receptor (GPER) is known to play an important role in hormone-associated cancers. G-1, a novel synthetic GPER agonist, has been reported to exhibit anti-carcinogenic properties. However, the chemotherapeutic mechanism of GPER is yet unclear. Here, we evaluated GPER expression in human gastric cancer tissues and cells. We found that G-1 treatment attenuates GPER expression in gastric cancer. GPER expression increased G-1-induced antitumor effects in mouse xenograft model. We analyzed the effects of knockdown/overexpression of GPER on G-1-induced cell death in cancer cells. Increased GPER expression in human gastric cancer cells increased G-1-induced cell death via increased levels of cleaved caspase-3, -9, and cleaved poly ADP-ribose polymerase. Interestingly, during G-1-induced cell death, GPER mRNA and protein expression was attenuated and associated with ER stress-induced expression of PERK, ATF-4, GRP-78, and CHOP. Furthermore, PERK-dependent induction of ER stress activation increased G-1-induced cell death, whereas PERK silencing decreased cell death and increased drug sensitivity. Taken together, the data suggest that the induction of ER stress via GPER expression may increase G-1-induced cell death in gastric cancer cells. These results may contribute to a new paradigm shift in gastric cancer therapy.

Sphigosine-1-Phosphate-Induced ERK Activation Protects Human Melanocytes from UVB-Induced Apoptosis

  • Kim, Dong-Seok;Kim, Sook-Young;Lee, Jai-Eun;Kwon, Sun-Bang;Joo, Young-Hyun;Youn, Sang-Woong;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • 제26권9호
    • /
    • pp.739-746
    • /
    • 2003
  • Ultraviolet B (UVB) is known to induce apoptosis in human melanocytes. Here we show the cytoprotective effect of sphingosine-1-phosphate (S1P) against UVB-induced apoptosis. We also show that UVB-induced apoptosis of melanocytes is mediated by caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage, and that S1P prevents apoptosis by inhibiting this apoptotic pathway. We further investigated three major mitogen-activated protein (MAP) kinases after UVB irradiation. UVB gradually activated c-Jun N-terminal kinase (JNK) and p38 MAP kinase, while extracellular signal-regulated protein kinase (ERK) was inactivated transiently. Blocking of the p38 MAP kinase pathway using SB203580 promoted cell survival and inhibited the activation of caspase-3 and PARP cleavage. These results suggest that p38 MAP kinase activation may play an important role in the UVB-induced apoptosis of human melanocytes. To explain this cytoprotective effect, we next examined whether S1P could inhibit UVB-induced JNK and p38 MAP kinase activation. However, S1P was not found to have any influence on UVB-induced JNK or p38 MAP kinase activation. In contrast, S1P clearly stimulated the phosphorylation of ERK, and the specific inhibition of the ERK pathway using PD98059 abolished the cytoprotective effect of S1P. Based on these results, we conclude that the activation of p38 MAP kinase plays an important role in UVB-induced apoptosis, and that S1P may show its cytoprotective effect through ERK activation in human melanocytes.

Opposing Effects of ERK and p38 MAP Kinases on HeLa Cell Apoptosis Induced by Dipyrithione

  • Fan, Yumei;Chen, Hui;Qiao, Bo;Luo, Lan;Ma, Hsiaoyen;Li, Heng;Jiang, Jihong;Niu, Dezhong;Yin, Zhimin
    • Molecules and Cells
    • /
    • 제23권1호
    • /
    • pp.30-38
    • /
    • 2007
  • Dipyrithione (2, 2'-dithiobispyridine-1, 1'-dioxide, PTS2), a pyrithione derivate, is highly bactericidal and fungicidal. In this study we examined its apoptotic effect on HeLa cells. PTS2 induced HeLa cell death in a dose and time dependent manner. ERK1/2 and p38 were markedly activated, but little JNK1/2 activation was detected. Suppression of p38 activation by SB203580 reduced the extent of apoptosis of the HeLa cells and also prevented induction of p21, release of cytochrome c, and cleavage of caspase-3 and PARP. Inhibition of ERK1/2 with PD98059 increased apoptosis, indicating that ERK1/2 activation has an anti-apoptotic effect on PTS2-induced HeLa cell apoptosis. PTS2 also inhibited murine sarcoma 180 and hepatoma 22 tumor growth in an animal tumor model. Our findings indicate that PTS2 possesses anti-tumor activity, that caspase-3 and poly (ADP-ribose) polymerase (PARP) are involved in PTS2-induced HeLa cell apoptosis and that ERK1/2 and p38 have opposing effects on this apoptosis.

HY253, a Novel Decahydrofluorene Analog, Induces Apoptosis via Intrinsic Pathway and Cell Cycle Arrest in Liver Cancer HepG2 Cells

  • Choi, Ko-woon;Suh, Hyewon;Jang, Seunghun;Kim, Dongsik;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권3호
    • /
    • pp.413-417
    • /
    • 2015
  • Recently, we isolated HY253, a novel decahydrofluorene analog with a molecular structure of 7,8a-divinyl-2,4a,4b,5,6,7,8,8a,9,9a-decahydro-1H-fluorene-2,4a,4b,9a-tetraol from the roots of Aralia continentalis, which is known as Dokwhal (獨活), a traditional medicinal herb. Moreover, we previously reported its cytotoxic activity on cancer cell proliferation in human lung cancer A549 and cervical cancer HeLa cells. The current study aimed to evaluate its detailed molecular mechanisms in cell cycle arrest and apoptotic induction in human hepatocellular carcinoma HepG2 cells. Flow cytometric analysis of HepG2 cells treated with $60{\mu}M$ HY253 revealed appreciable cell cycle arrest at the G1 phase via inhibition of Rb phosphorylation and down-regulation of cyclin D1. Furthermore, using western blots, we found that up-regulation of cyclin-dependent kinase inhibitors, such as p21CIP1 and p27KIP1, was associated with this G1 phase arrest. Moreover, TUNEL assay and immunoblottings revealed apoptotic induction in HepG2 cells treated with $60{\mu}M$ HY253 for 24 h, which is associated with cytochrome c release from mitochondria, via down-regulation of anti-apoptotic Bcl-2 protein, which in turn resulted in activation of caspase-9 and -3, and proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). Accordingly, we suggest that HY253 may be a potent chemotherapeutic hit compound for treating human liver cancer cells via up-regulation and activation of the p53 gene.

보두산(寶豆散)에 의한 SNU-1 세포의 Apoptosis 유도와 Cell cycle arrest (Herb medicine Bo-du-san induces caspase dependent apoptosis and cell cycle arrest human gastric cancer cells, SNU-1)

  • 윤현정;서교수;최재우;이현우;허숙경;박원환;박선동
    • 대한본초학회지
    • /
    • 제22권2호
    • /
    • pp.35-43
    • /
    • 2007
  • Objectives : The purpose of this study was to investigate the effect of Bo-du-san (BOS) on apoptosis in human gastric cancer cells, SNU-l cells. BOS, a drug preparation consisting of two herbs, that is, Crotonis Fructus (Strychni ignatii Semen, bodu in Korean) and Glycyrrhizae Radix (Glycyrrhizae uralensis FISCH, Gamcho in Korean). Methodss : In this study, methanol extract of BOS was examined for cytotoxic activity on human gastric cancer cells, SNU-1 cells, using XTT assay, with an IC50 value was 0.7 mg/ml and 0.3 mg/ml at 24 hrs and 48 hrs, respectively. Apoptosis induction by BDS in SNU-l cells was verified by the induction of DNA fragmentation, cleavage of poly ADP-ribose polymerase (PARP), and activation of caspase-3, -8 and -9. Inhibitors of caspase-3, -8 and -9 (Ac-DEVD-CHO, Z-IETD-FMK and Z-LEHD-FMK) efficiently blocked BOS-induced cell death of SNU-l. Resultss : BOS-induced cell death was via caspase dependent apoptosis. Moreover, treatment of BOS result in the decrease the G1/S cycle regulation proteins (cyclin D1 and E) expression and increase CDK inhibitor proteins (p21 and p27) expression, and increase apoptotic protein, p53 expression. Thus, BOS induces apoptosis in SNU-1 cells via cell cycle arrested in G1 phase. Conclusions : These results indicated that BOS has some potential for use as an anti-cancer agent.

  • PDF

Suppression of Human Prostate Cancer Cell Growth by β-Lapachone via Down-regulation of pRB Phosphorylation and Induction of Cdk Inhibitor p21WAF1/CIP1

  • Choi, Yung-Hyun;Kang, Ho-Sung;Yoo, Mi-Ae
    • BMB Reports
    • /
    • 제36권2호
    • /
    • pp.223-229
    • /
    • 2003
  • The product of a tree (Tabebuia avellanedae) from South America, $\beta$-lapachone, is known to exhibit various pharmacological properties, the mechanisms of which are poorly understood. The aim of the present study was to further elucidate the possible mechanisms by which $\beta$-lapachone exerts its anti-proliferative action in cultured human prostate cancer cells. We observed that the proliferation-inhibitory effect of $\beta$-lapachone was due to the induction of apoptosis, which was confirmed by observing the morphological changes and cleavage of the poly(ADP-ribose) polymerase protein. A DNA flow cytometric analysis also revealed that $\beta$-lapachone arrested the cell cycle progression at the G1 phase. The effects were associated with the down-regulation of the phosphorylation of the retinoblastoma protein (pRB) as well as the enhanced binding of pRB and the transcription factor E2F-1. Also, $\beta$-lapachone suppressed the cyclindependent kinases (Cdks) and cyclin E-associated kinase activity without changing their expressions. Furthermore, this compound induced the levels of the Cdk inhibitor $p21^{WAF1/CIP1}$ expression in a p53-independent manner, and the p21 proteins that were induced by $\beta$-lapachone were associated with Cdk2. $\beta$-lapachone also activated the reporter construct of a p21 promoter. Overall, our results demonstrate a combined mechanism that involves the inhibition of pRB phosphorylation and induction of p21 as targets for $\beta$-lapachone. This may explain some of its anticancer effects.

Apicidin Induces Apoptosis via Cytochrome c-Mediated Intrinsic Pathway in Human Ovarian Cancer Cells

  • Ahn, Mee-Young;Na, Yong-Jin;Lee, Jae-Won;Lee, Byung-Mu;Kim, Hyung-Sik
    • Biomolecules & Therapeutics
    • /
    • 제17권1호
    • /
    • pp.17-24
    • /
    • 2009
  • Histone deacetylase (HDAC) inhibitors are a promising class of anticancer agents that inhibit cancer cell growth in vitro and in vivo. Previous report has shown that apicidin inhibited SK-OV-3 cells proliferation and down-regulation of cyclin B1 and CDK1, and up-regulation of $p21^{WAF1}$ and p27. However, the mechanism of apicidin-mediated apoptotic cell death is not clearly understood. For this study, we investigated the mechanism of apoptotic pathway induced by apicidin in human ovarian cancer cell. We found that SK-OV-3 cells treated with apicidin caused an increase in the percentage of cells in the G2/M phase, which preceded apoptosis characterized by the appearance of cells with sub-G1 population. To further investigate the mechanism of apoptosis induction by apicidin, we measured TUNEL assay, poly-ADP ribose polymerase (PARP) cleavage, and caspase activity in SK-OV-3 cells treated with apicidin for 48 h. Apicidin significantly enhanced apoptosis as measured by TUNEL positive apoptotic cells, PARP cleavage, and increased Bax/Bcl-2 ratio. Induction of apoptosis was confirmed by the release of cytochrome c to cytosol. Our data suggest that apicidin-induced apoptosis in SK-OV-3 cells was accompanied by caspase-3 activation and the increase in Bax/Bcl-2 ratio. These data suggest that apicidin may be effective in the treatment of ovarian cancer through activation of intrinsic apoptotic pathway.

Inducible Nitric Oxide Synthase Mediates the Triglyceride-induced Death of THP-1 Monocytes

  • Byung Chul Jung;Hyun-Kyung Kim;Jaewon Lim;Sung Hoon Kim;Yoon Suk Kim
    • 대한의생명과학회지
    • /
    • 제29권2호
    • /
    • pp.66-74
    • /
    • 2023
  • Triglyceride (TG) accumulation can cause monocytic death and suppress innate immunity. However, the signaling pathways involved in this phenomenon are not fully understood. This study aimed to examine whether inducible nitric oxide synthase (iNOS) is involved in the TG-induced death of THP-1 monocytes. Results showed that iNOS was upregulated in TG-treated THP-1 monocytes, and iNOS inhibition blocked TG-induced monocytic death. In addition, TG-induced poly (ADP-ribose) polymerase (PARP) cleavage and caspase-3 and -7 activation were suppressed by iNOS inhibition. Furthermore, the expression of X-linked inhibitor of apoptosis protein (XIAP) and survivin, which inhibit caspase-3 and -7, was reduced in TG-treated THP-1 monocytes, but iNOS inhibition recovered the TG-induced downregulation of XIAP and survivin expression. Considering that TG-induced monocytic death is triggered by caspase2 and -8, we investigated whether caspase-2 and -8 are linked to the TG-induced expression of iNOS in THP-1 monocytes. When the activities of caspase-2 and -8 were inhibited by specific inhibitors, the TG-induced upregulation of iNOS and downregulation of XIAP and survivin were restored in THP-1 monocytes. These results suggest that TG-induced monocytic death is mediated by the caspase-2/caspase-8/iNOS/XIAP and survivin/executioner caspase/PARP pathways.

HY251, a Novel Decahydrocyclopenta[a]indene Analog, Induces Apoptosis via tBid-Mediated Intrinsic Pathway in Human Ovarian Cancer PA-1 Cells

  • Suh, Hyewon;Choi, Ko-Woon;Kim, Myung Sic;Kim, Jeong Hyeon;Noh, Sun Young;Sung, Moon-Hee;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권11호
    • /
    • pp.1591-1595
    • /
    • 2012
  • We previously isolated a novel compound, HY251, with the molecular structure of 3-propyl-2-vinyl-1,2,3,3a,3b,6,7,7a,8,8a-decahydrocyclopenta[a]indene-3,3a,7a,8a-tetraol from the roots of Aralia continentalis. The current study was designed to evaluate the detailed molecular mechanisms underlying the apoptotic induction by HY251 in human ovarian cancer PA-1 cells. TUNEL assay and Western blot analyses revealed an appreciable apoptotic induction in PA-1 cells treated with $60{\mu}M$ of HY251 for 24 h. This apoptotic induction was associated with caspase-8-dependent Bid cleavage, which in turn resulted in the formation of pro-apoptotic truncated Bid (tBid), and activation of caspase-9 and -3, as well as the cleavage of poly(ADP-ribose) polymerase (PARP). Moreover, we found that this death event was also associated with the significant up-regulation and activation of the p53 tumor-suppressor protein through phosphorylation at Ser15. Therefore, we suggest that HY251 may be a potent cancer chemotherapeutic candidate for the treatment of ovarian cancer.

천화분이 MCF-7 유방암 세포주의 G2/M 세포주기 억제에 미치는 영향 (Effect of Arresting MCF-7 Human Breast Carcinoma Cell at G2/M Phase of Trichosanthes Kirilowii)

  • 정승민;정미경;고성규;최유경;박종형;전찬용
    • 동의생리병리학회지
    • /
    • 제25권5호
    • /
    • pp.857-862
    • /
    • 2011
  • The purpose of this study is to investigate the anti-proliferative mechanism by Trichosanthes kirilowii (TCK) in MCF-7 human breast carcinoma cell. In this study, we used human breast cancer cell line, Michigan cancer foundation-7 cells (MCF-7 cells). They were co-incubated with 30~200 ${\mu}g$/ml TCK for 48 hours, and cell viability was measured by Water-soluble tetrazolium salt-1 (WST-1) assay. After MCF-7 cells were exposed to 60 ${\mu}g$/ml of TCK for 0, 3, 6, 12, 24, 48 hours, We performed flow analysis cytometry sorting(FACS) and western blot analysis. We investigated the effect of dose-dependent cell growth inhibition by TCK, which could be proved by WST-1 assay. Also, flow cytometry analysis showed that TCK increased percentage of subG1 phase and G2/M phase cell cycle. In addition, TCK induced apoptosis through the expression of caspase-9, -3 and poly(ADP-ribose) polymerase(PARP) activation. Moreover, we showed that ATM-dependent G2/M phase arrest by DNA damage and phosphorylation of chk2, cdc25C, cdc2(Tyr15). Taken together, these results suggest that by G2/M phase arrest through DNA damage and inducing of apoptosis through intrinsic pathway, TCK may have potential tumor suppressor in breast cancer.