• Title/Summary/Keyword: Poly (/-lactic acid)

Search Result 297, Processing Time 0.021 seconds

Local tissue effects of various barrier membranes in a rat subcutaneous model

  • Naenni, Nadja;Lim, Hyun-Chang;Strauss, Franz-Josef;Jung, Ronald E.;Hammerle, Christoph H.F.;Thoma, Daniel S.
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.5
    • /
    • pp.327-339
    • /
    • 2020
  • Purpose: The purpose of this study was to examine the local tissue reactions associated with 3 different poly(lactic-co-glycolic acid) (PLGA) prototype membranes and to compare them to the reactions associated with commercially available resorbable membranes in rats. Methods: Seven different membranes-3 synthetic PLGA prototypes (T1, T2, and T3) and 4 commercially available membranes (a PLGA membrane, a poly[lactic acid] membrane, a native collagen membrane, and a cross-linked collagen membrane)-were randomly inserted into 6 unconnected subcutaneous pouches in the backs of 42 rats. The animals were sacrificed at 4, 13, and 26 weeks. Descriptive histologic and histomorphometric assessments were performed to evaluate membrane degradation, visibility, tissue integration, tissue ingrowth, neovascularization, encapsulation, and inflammation. Means and standard deviations were calculated. Results: The histological analysis revealed complete integration and tissue ingrowth of PLGA prototype T1 at 26 weeks. In contrast, the T2 and T3 prototypes displayed slight to moderate integration and tissue ingrowth regardless of time point. The degradation patterns of the 3 synthetic prototypes were similar at 4 and 13 weeks, but differed at 26 weeks. T1 showed marked degradation at 26 weeks, whereas T2 and T3 displayed moderate degradation. Inflammatory cells were present in all 3 prototype membranes at all time points, and these membranes did not meaningfully differ from commercially available membranes with regard to the extent of inflammatory cell infiltration. Conclusions: The 3 PLGA prototypes, particularly T1, induced favorable tissue integration, exhibited a similar degradation rate to native collagen membranes, and elicited a similar inflammatory response to commercially available non-cross-linked resorbable membranes. The intensity of inflammation associated with degradable dental membranes appears to relate to their degradation kinetics, irrespective of their material composition.

Phospholipid polymer can reduce cytotoxicity of poly (lactic acid) nanoparticles in a high-content screening assay

  • Kim, Hyung Il;Ishihara, Kazuhiko
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.2
    • /
    • pp.95-104
    • /
    • 2014
  • The objective of this study was to evaluate the cytotoxicity of poly (lactic acid) (PLA) nanoparticles. We used a water-soluble, amphiphilic phospholipid polymer, poly (2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB30W), as a stabilizer for the PLA nanoparticles. The PLA nanoparticles and PMB30W-modified PLA (PLA/PMB30W) nanoparticles were prepared by evaporating tetrahydrofuran (THF) from its aqueous solution. Precipitation of the polymers from the aqueous solution produced PLA and PLA/PMB30W nanoparticles with a size distribution of $0.4-0.5{\mu}m$. The partial coverage of PMB30W on the surface of the PLA/PMB30W nanoparticles was confirmed by X-ray photoelectron spectroscopy (XPS) and dynamic light-scattering (DLS). A high-content automated screening assay (240 random fields per group) revealed that the PLA nanoparticles induced apoptosis in a mouse macrophage-like cell line (apoptotic population: 73.9% in 0.8 mg PLA/mL), while the PLA/PMB30W nanoparticles remained relatively non-hazardous in vitro (apoptotic population: 13.8% in 0.8 mg PLA/mL). The reduction of the apoptotic population was attributed to the phosphorylcholine groups in the PMB30W bound to the surface of the nanoparticle. In conclusion, precipitation of PLA in THF aqueous solution enabled the preparation of PLA nanoparticles with similar shapes and size distribution but different surface characteristics. PMB30W was an effective stabilizer and surface modifier, which reduced the cytotoxicity of PLA nanoparticles by enabling their avoidance of the mononuclear phagocyte system.

Evaluation on the bone regenerative capacity of hyaluronic acid applied poly (D,L-lactic-co-glycolic acid) membranes in rabbit calvarial defect (Rabbit calvaria를 이용하여 hyaluronic acid (HA)를 처리한 poly (D,L-lactic-co-glycolic acid) 차폐막들의 골 생성능력에 대한 비교 연구)

  • Kim, Nam-Sook;Yun, Kwi-Dug;Vang, Mong-Sook;Yang, Hong-So;Lim, Hyun-Phil;Kang, Sung-Soo;Park, Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.2
    • /
    • pp.158-165
    • /
    • 2010
  • Purpose: The objective of the present study was to histologically evaluate durability and bone regeneration capacity of new synthetic membranes in comparison to clinically available collagen membrane. Material and methods: To the skulls of 12 rabbits, we created 4 bone defects of 6 mm in diameter on each of them. Each of defects were covered with at least one of 5 membranes; No membrane, Collagen ($Ossix^{TM}$), PLGA, HA-coated-PLGA and HA-PLGA/PLGA. After 4, 8, 12 weeks, we cut the skulls and dyed with H-E. And then, the histologic observation was done. Results: In current study, the control group which did not use the membrane showed bone regeneration at 12 weeks and covered the bone defect partially. New bones were formed through the underneath of endocranium, and the upper defect was filled with connective tissues and fats. Collagen membrane ($Ossix^{TM}$) showed new bones after 4 weeks, and they were formed through the membrane which maintained until 12 weeks. PLGA, HA-coated-PLGA, HA-PLGA/PLGA showed bone regeneration after 4 weeks and after 8 weeks, they mostly filled defects. At 12 weeks, we could find new bones and previous bones almost look alike and also, they united well. Membranes were unnoticeable after 4 weeks and were absorbed. Conclusion: Bone formation and maturation of PLGA, HA-coated-PLGA and HA-PLGA/PLGA were faster than the control group. They showed no difference on the application of HA and after 4 weeks, they were absorbed.

Effect of Inflammatory Responses to PLGA Films Incorporated Hesperidin: In vitro and In vivo Results (PLGA/헤스페리딘 함량별 필름에서 염증 완화 효과: In vitro, In vivo 결과)

  • Song, Jeong Eun;Shim, Cho Rok;Lee, Yujung;Ko, Hyun Ah;Yoon, Hyeon;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.323-331
    • /
    • 2013
  • Hesperidin (Hes) has known to having some functions like protection of blood circulatory system, anti-tumor effect, antioxidant effect and anti-inflammatory effect. The goal of this study is to demonstrate the relationship between Hes and inflammatory through in vitro and in vivo studies using poly(lactic-co-glycolic acid) (PLGA) film including Hes as a tissue engineered scaffold. To confirm the proliferation of cells on fabricated scaffold, cells (RAW 264.7 and NIH/3T3) were seeded on PLGA/Hes film then analyzed with MTT and SEM at 1 and 3 days after seeding. The results from ELISA, RT-PCR, and FACS for anti-oxident and anti-inflammatory effect showed that inflammatory response of PLGA/Hes film decreased more than that of PLGA film. Also, in vivo result confirmed that inflammatory response by implanted PLGA/Hes film decreased more comparing with PLGA film. This is because of anti-inflammatory effect of Hes reducing induced inflammatory cell and accumulation of fibrous capsule. The results showed that PLGA/Hes film's capacity on reducing inflammatory is better than PLGA film because of Hes.

Effects of Demineralized Bone Particle Loaded Poly(lactic-co-glycolic acid) Scaffolds on the Attachment and Proliferation of Costal Cartilage Cells (탈미네랄화된 골분/PLGA 지지체에서 늑연골 세포의 부착과 성장에 미치는 영향)

  • Cho, Sun Ah;Song, Jeong Eun;Kim, Kyoung Hee;Ko, Hyun Ah;Lee, Dongwon;Kwon, Soon Yong;Chung, Jin Wha;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.632-637
    • /
    • 2013
  • It has been widely accepted that costal cartilage cells (CCs) have more excellent initial proliferation capacity than articular cartilage cells as well as the easiness for isolation and collection. This study demonstrated that CCs might be one of the substitutes for articular cartilage cells by tissue engineered cartilage. Poly(lactic-co-glycolic acid) (PLGA) has been extensively tested and used as scaffold material but it was limited by the low attachment of cells and the induction of inflammatory cells. Base on previous our studies, we confirmed demineralized bone particle (DBP) had the power of the reduction of inflammatory reaction and the stimulation proliferation of cells. We fabricated PLGA scaffold loaded with 10, 20, 40 and 80 wt% DBP and then tested the possibility of the regeneration of cartilage using CCs. Assays of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and scanning electron microscope (SEM) carried out to evaluate the attachment and proliferation of CCs in DBP/PLGA scaffolds. Glycosaminoglycan (sGAG) and collagen contents assay were conducted to confirm the effects of DBP on formation of extracellular matrix. This study demonstrated that DBP/PLGA scaffolds showed significant positive effects on cell growth and proliferation due to the vitality of DBP as well as the possibility of the application of CCs for tissue engineered cartilage.

Inflammatory Responses to Hydroxyapatite/Poly(lactic-co-glycolic acid) Scaffolds with Variation of Compositions (하이드록시아파타이트/락타이드 글리콜라이드 공중합체 지지체 조성에 따른 염증 완화 효과)

  • Jang, Ji Eun;Kim, Hye Min;Kim, Hyeongseok;Jeon, Dae Yeon;Park, Chan Hum;Kwon, Soon Yong;Chung, Jin Wha;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.156-163
    • /
    • 2014
  • Hydroxyapatite has osteoconductivity, biocompatibility and noninflammatory, and it has been used clinically as artificial bone. In this study, we prepared hydroxyapatite/poly(lactic-co-glycolic acid) (PLGA) scaffolds using 0, 10, 20, 40 and 60 wt% of hydroxyapatite. We analyzed compressive strength, SEM analysis and FTIR for mechanical property of 3D hydroxyapatite/PLGA scaffolds. For biocompatibility tests, cell proliferation and viability were measured via MTT assay and SEM. We analyzed RT-PCR, FACS, histology (H&E, ED-1) for anti-inflammatory effect. This study showed that hydroxyapatite hybrid scaffolds have low inflammatory reaction compared with the PLGA. This result has a potential for the application of artificial bone graft material.

Development of PLGA Nanoparticles for Astrocyte-specific Delivery of Gene Therapy: A Review (별아교세포 선택적 유전자 치료전달을 위한 PLGA 나노입자 개발)

  • Shin, Hyo Jung;Lee, Ka Young;Kwon, Kisang;Kwon, O-Yu;Kim, Dong Woon
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.849-855
    • /
    • 2021
  • Recently, as nanotechnology has been introduced and used in various fields, the development of new drugs has been accelerating. Nanoparticles have maintained blood drug concentration for extended periods of time with a single administration of the drug. The drug can then be selectively released only at the pathological site, thereby reducing side effects to other non-pathological sites. In addition, nanoparticles can be modified for selective target sites delivery for other specific diseases, with polymers being widely used in the manufacture of these nanoparticles. Poly (D,L-lactic-co-glycolic acid ) (PLGA) is one of the most extensively developed biodegradable polymers. PLGA is widely used in drug delivery for a variety of applications. It has also been approved by the FDA as a drug delivery system and is widely applied in controlled release formulations, such as in gene therapy treatments. PLGA nanoparticles have been developed as delivery systems with high efficiency to specific cell types by using passive and active targeting methods. After the development of a drug delivery system using PLGA nanoparticles, the drug is selectively delivered to the target site, and the effective blood concentration for extended periods of time is optimized according to the disease. In this review paper, we focus on ways to improve cell-specific treatment outcomes by examining the development of astrocyte selective nanoparticles based on PLGA nanomaterials for gene therapy.

Manufacture of Continuous Glass Fiber Reinforced Polylactic Acid (PLA) Composite and Its Properties (연속 유리섬유 강화 폴리유산 복합재료의 제조 및 물성)

  • Roh, Jeong U;Lee, Woo Il
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.230-234
    • /
    • 2013
  • The continuous glass fiber reinforced poly-lactic acid (PLA) composite was manufactured by direct melt impregnation. The mechanical and thermal properties of continuous glass fiber reinforced PLA composite were observed. Measured properties were compared with the reference values of neat PLA and the injection molded glass fiber/ PLA composite. The continuous glass fiber reinforced PLA composite having a fiber volume fraction of 27.7% shows enhanced tensile strength of 331.1 MPa, flexural strength of 528.6 MPa, and flexural modulus of 24.0 GPa. The enhanced heat deflection temperature (HDT) and the increased cystallinity were also observed. The degree of impregnation as a function of pulling speed was also assessed. The degree of impregnation at the pulling speed of 5 m/min was over 90% in this research.

Pharmaceutical Potential of Gelatin as a pH-responsive Porogen for Manufacturing Porous Poly(d,l-lactic-co-glycolic acid) Microspheres

  • Kim, Hyun-Uk;Park, Hong-Il;Lee, Ju-Ho;Lee, Eun-Seong;Oh, Kyung-Taek;Yoon, Jeong-Hyun;Park, Eun-Seok;Lee, Kang-Choon;Youn, Yu-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.4
    • /
    • pp.245-250
    • /
    • 2010
  • Porous poly(lactic-co-glycolic acid) microspheres (PLGA MS) have been utilized as an inhalation delivery system and a matrix scaffold system for tissue engineering. Here, gelatin (type A) is introduced as an extractable pH-responsive porogen, which is capable of controlling the porosity and pore size of PLGA microspheres. Porous PLGA microspheres were prepared by a water-in-oil-in-water ($w_1/o/w_2$) double emulsification/solvent evaporation method. The surface morphology of these microspheres was examined by varying pH (2.0~11.0) of water phases, using scanning electron microscopy (SEM). Also, their porosity and pore size were monitored by altering acidification time (1~5 h) using a phosphoric acid solution. Results showed that the pore-forming capability of gelatin was optimized at pH 5.0, and that the surface pore-formation was not significantly observed at pHs of < 4.0 or > 8.0. This was attributable to the balance between gel-formation by electrostatic repulsion and dissolution of gelatin. The appropriate time-selection between PLGA hardening and gelatin-washing out was considered as a second significant factor to control the porosity. Delaying the acidification time to ~5 h after emulsification was clearly effective to make pores in the microspheres. This finding suggests that the porosity and pore size of porous microspheres using gelatin can be significantly controlled depending on water phase pH and gelatin-removal time. The results obtained in this study would provide valuable pharmaceutical information to prepare porous PLGA MS, which is required to control the porosity.

Evaluation of PLA Fiber Dissolution in Cement Paste and Geopolymer (시멘트 페이스트 및 지오폴리머 내의 PLA 섬유의 용해성 평가)

  • Kim, Joo-Hyung;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.204-211
    • /
    • 2020
  • Poly-Lactic Acid(PLA) fiber is an eco-friendly material and is biodegradable, so it can be utilized for manufacturing porous construction materia ls with interna l pore connection. In this study, domestic PLA fiber products(0.5mm india meter, 1.0mm in length, 10mm in length) were tested for melting at high temperatures and high alkality, and they were incorporated with FA-based geopolymer. Compressive strength was obtained through high temperature curing and alkali activator, however the complete melting of the PLA fiber was not ensured. The previous study handling PLA fiber with 0.003mm in diameter was completely dissolved, but 0.5mm and 1.0mm in diameter showed 42.5% and 33.3% of dissolution ratio, respectively. In addition, the increasing fiber volume led floating fibers during curing, which had a negative effect on its workability and solubility. Although the properties of PLA fiber may vary depending on the raw materials and production conditions, PLA fiber with 0.1mm or less diameter is recommended for porous construction material.