• Title/Summary/Keyword: Poly(butylene succinate)

Search Result 51, Processing Time 0.022 seconds

Photooxidation of Poly(butylene succinate) Films by UV/Ozone Irradiation (자외선/오존 조사에 의한 Poly(butylene succinate) 필름의 광산화)

  • Joo, Jin-Woo;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.26 no.3
    • /
    • pp.159-164
    • /
    • 2014
  • Biodegradable Poly(butylene succinate), PBS, was photooxidized by UV/ozone irradiation and the effect of UV energy on the surface properties of the UV-irradiated PBS film were investigated by the measurement of reflectance, surface roughness, contact angles, chemical composition, and zeta potential. With increasing UV energy, reflectance decreased in the visible and ultraviolet regions particularly at the wavelength of 380nm. The irradiation produced nano-scale surface roughness including the maximum peak-to-valley roughness increased from 106nm for the unirradiated sample to 221nm at the UV energy of $10.6J/cm^2$. The improved hydrophilicity was due to the higher $O_{1s}/C_{1s}$ resulting from the introduction of polar groups such as C-O and C=O bonds. The surface energy of the PBS increased from $42.1mJ/m^2$ for the unirradiated PBS to $56.8mJ/m^2$ at the irradiation of $21.2J/cm^2$. The zeta potentials of the UV-irradiated PBS also decreased proportionally with increasing UV energy. The cationic dyeability of the PBS increased accordingly resulting from the improved affinity of the irradiated PBS surfaces containing photochemically introduced anionic and dipolar dyeing sites.

Thermal and Physical Properties of Poly(butylene succinate)/Poly(${\varepsilon}$-caprolactone) Copolyesters Prepared by Transesterification (에스테르 교환반응으로 제조된 Poly(butylene succinate)/Poly(${\varepsilon}$-caprolactone) Copolyesters의 물리적 및 열적 성질에 관한 연구)

  • Yoo, Young-Tai;Yang, Su-Bong;Im, Seung-Soon
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.486-495
    • /
    • 2001
  • Degradable poly(butylene succinate) (PBS)/poly(TEX>${\varepsilon}$-caprolactone) (PCL) copolyesters were prepared by using transesterification between poly(butylene succinate) and poly(TEX>${\varepsilon}$-caprolactone). The thermal and mechanical properties of copolyesters were investigated using differential scanning calorimetry and tensile testing. Interchange reaction between PBS and PCL molecules could be identified from proton NMR spectra. The reduced viscosity of the PBS/PCL copolyesters increased with reaction time except for a series of PBS/PCL (50/50 wt%) copolyesters. For all the compositions, the melting point and crystallization temperature of high-$T_m$ component (PBS) decreased as reaction time increased. From the results of tensile testing, it was found that stress and strain at break of the PBS/PCL copolymers containing less than 40 wt% PCL improved as compared to those of pure PBS, but at 50 wt% PCL stress at break of PBS/PCL copolymers was lowered due to decrease of crystallinity. On the other hand, Young's moduli of all the copolyesters decreased with both reaction time and PCL content.

  • PDF

Biodegradation Characteristics of Poly(butylene succinate-co-butylene adipate) during Soil Burial Test (토양 매립 시험에서 Poly(butylene succinate-co-butylene adipate)의 생분해 특성)

  • Kim, Mal-Nam
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.3
    • /
    • pp.150-157
    • /
    • 2010
  • Biodegradation behavior of poly(butylene succinate-co-butylene adipate) (PBSA) was examined when PBSA was buried in the natural soil and the soil inoculated with Burkholderia cepacia after sterilization. After 80 days of the soil burial test at room temperature, the PBSA film buried in the natural soil lost 34.0% of its intial weight, while the same film lost 59.2% of its initial weight when buried in the sterile soil inoculated with B. cepacia. The optical and SEM observations of the surface morphology of the PBSA film also indicated that the surface erosion and rupture took place faster when the film was buried in the sterile soil inoculated with B. cepacia compared to the film buried in the natural soil. Viable cell number in the natural soil and that the sterile soil inoculated with B. cepacia increased by a factor of 6~7 and 10~14, respectively as compared to the initial viable cell number.

Biocompatibility and Biodegradation of Poly(butylene succinate) ionomer (Poly(butylene succinate) ionomer (PBSi)의 생체적합성과 생분해에 관한 연구)

  • Han, Sang-Il;Kang, Sun-Woong;Kim, Byung-Soo;Seungsoon Im
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.187-188
    • /
    • 2003
  • In previous study, we examined poly(butylene succinate) ionomer (PBSi) and confirmed that PBSi showed acceptable mechanical and rheological properties to apply in various field, due to the physical cross-linkage formed by ion aggregation. Besides, the incorporation of ionic groups led to the change of surface properties such as the hydrophilicity and surface morphology, which could affect hydrolytic degradation. (omitted)

  • PDF

Physical Properties and Foaming Characteristics of Poly(butylene adipate-co-succi nate)/Thermoplastic Starch Blends (Poly(butylene adipate-co-succinate)/Thermoplastic Starch 블렌드의 물성과 발포특성)

  • Kim, Sang-Woo;Park, Joon-Hyun;Kim, Dae-Jin;Lim, Hak-Sang;Seo, Kwan-Ho
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.557-564
    • /
    • 2005
  • Thermoplastic starch (TPS) was manufactured and blended with poly(butylene adipate-co-succinate) (PBAS), which is one of the most popular biodegradable aliphatic polyesters. The effects of the TPS contents on the mechanical properties, thermal characteristics, and biodegradability of PBAS/TPS blends were investigated. The foaming characteristics of those were also studied. With small amount of TPS, mechanical properties of the blends were largely deteriorated and the variations of them decreased with more addition of TPS. In addition, TPS decreased crystallinity and thermal decomposition temperature of PBAS. The PBAS/TPS foam having maximum blowing ratio was obtained with 20 Phr of TPS, and their blowing ratio decreased with the further increase of TPS.

Synthesis and characterization of poly(ethylene succinate-co-ethylene oxalate) (poly(ethylene succinate-co-ethylene oxalate)의 합성과 분석)

  • 이시영;배종석;김동국;임승순
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.13-16
    • /
    • 2001
  • 최근 생분해성 고분자[1]의 유용성은 플라스틱 쓰레기의 처리에 관한 복합적인 문제점의 영향 때문에 많은 주목을 받고 있다 Aliphatic polyester는 생분해가능 혹은 퇴비로 사용 가능한 플라스틱 상품[2-4]의 용도로 가장 바람직한 구조를 가진 물질중의 하나이다. 이런 필요성의 대두로 poly(ethylene oxalate)(PEO)와 poly(butylene succinate)(PBS)[5-9]의 합성에 관해 많은 연구가 있었다. (중략)

  • PDF

Foaming of Poly(butylene succinate) with Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 Poly(butylene succinate) 발포)

  • Son, Jae-Myoung;Song, Kwon-Bin;Kang, Byong-Wook;Lee, Kwang-Hee
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • The foaming of poly(butylene succinate) (PBS) using supercritical $CO_2(scCO_2)$ was studied. In order to improve the melt strength, PBS was modified using the reactive compounding technique. Rapid decompression of $scCO_2$-saturated PBS at a temperature above the depressed $T_m$ yielded expanded microcellular foams. The resulting foam structure could be controlled by manipulating process conditions. Experiments varying the foaming temperature while holding other variables constant showed that higher temperatures produced larger cells and reduced cell densities. Higher saturated pressures led to higher nucleation densities and smaller cell sizes. Decreasing the rate of depressurization permitted a longer period of cell growth and therefore larger cells were obtained.