• Title/Summary/Keyword: Poly(L-histidine)

Search Result 13, Processing Time 0.016 seconds

The penetration enhancement and the lipolystic effects of TAT-GKH, in both In vitro, Ex vivo, and In vivo.

  • Lim, J.M.;Chang, M.Y.;Park, S.G.;Kang, N.G.;Song, Y.S.;Lee, Y.H.;Yoo, Y.C.;Cho, W.G.;Han, S.G.;Kang, S.H.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.87-107
    • /
    • 2003
  • It was demonstrated that Transactivating transcriptional activator(TAT) protein from HIV-1 shown to enter cells when added to the surrounding media. TAT peptide chemically attached to various proteins was able to deliver these proteins to various cell and even in tissues in mice with high levels in heart and spleen. In this study, the tripeptide GKH(Glycine-Lysine-Histidine) derived from Parathyroid hormone (PTH), which was known as lipolytic peptide, is attached to 9-poly Lysine(TAT) to be used as a cosmetic ingredient for slimming products. When Glycerol release, expressed as extracellular glycerol concentration, is lipolysis index, TAT-GKH at $10^{-5}$mo1/L induces approximately 41.5% maximal lipolytic effects in epididymal adipocytes isolated from rats, compared with basal lipolysis. Epididymal adipose tissues of male rats is assessed ex vivo by microdialysis. Probes are perfused with Ringer solution in which increasing concentrations of TAT-GKH. The perfusion of TAT-GKH induces lipolytic effect. Penetration study showed that TAT-GKH efficiently elevates 36 times higher penetration into the excised hairless mice skin than GKH. in vivo study showed that TAT-GKH had a better effect upon the relative volume of eye bag after 28 days of application on twenty(+2) healthy female volunteers. It was identified that TAT-GKH increases penetration enhancement and lipolytic effects in both in vitro, ex vivo and in vivo.

  • PDF

One-step purification and biochemical characterization of a (s)-stereospecific esterase from Pseudomonas fluorescens KCTC 1767

  • Choe, Gi-Seop;Kim, Ji-Hui;Kim, Ji-Yeon;Kim, Geun-Jung;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.445-448
    • /
    • 2002
  • The Pseudomonas fluorescens KCTC 1767, a selected and identified as potential candidate for stereo-specific resolution of rac-ketoprofen ethyl ester, was systematically investigated in order to induce the high level expression and detailed characterization of the expressing enzyme esterase. We cloned the esterase gene from chromosomal DNA of Pseudomonas fluorescens KCTC 1767 by PCR with two synthetic primers that desinged for simple purification. The recombinant esterase from Pseudomonas fluorescens KCTC 1767 exibited a high conversion rate and enantioselectivity to the (S)-ketoprofen ethyl ester as expected. The enzyme was easily purified to homogeniety by using a metal chelating affinity chromatography as a protein with poly histidine taq, and thus obtained 0.6 mg of protein from a 100 mL culture broth in a single step. The purified enzyme was steadily stable at the pH range from 7.0 to 10. The activity was also retained to be about 70% after the preincubation at $40^{\circ}C$ but over $50^{\circ}C$ lost the activity completely. The molecular mass of the esterase was estimated to be about 43 kDa on SDS-PAGE, and an identical result was also shown in gel filteration chromatography. The specific activity was calculated 27 mM/mg-protein/min by using the rac-ketoprofen ethly ester as a substrate.

  • PDF

Production of Cyclodextrin Glucanotransferase from Aspergillus sp. CC-2-1 and its Characterization (Aspergillus sp. CC-2-1에 의해 생산되는 Cyclodextrin Glucanotransferase의 생산 및 특성)

  • Cho, Young-Je;Kim, Myoung-Uk
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1158-1167
    • /
    • 2000
  • To produce ${\beta}-cyclodextrin({\beta}-CD)$, a cyclodextrin glucanotransferase(CGTase) producing Aspergillus sp. CC-2-1 was isolated from soil. The enzyme was purified and its enzymological characteristics were investigated. It was found that production of CGTase reached to the maximum when the wheat bran medium containing 0.1% albumin, 2% $(NH_4)_2S_2O_8$, 2% soluble starch and 0.2% $KH_2PO_4$ was cultured for 5 days at $37^{\circ}C$. The purity of CGTase was increased by 13.14 folds after DEAE-cellulose ion exchange chromatography and Sephadex G-100, G-150 gel filtration and the specific activity was 172.14 unit/mg. Purified enzyme was confirmed as a single band by the polyacrylamide gel electrophoresis. The molecular weight of CGTase was estimated to be 27,800 by Sephadex G-100 gel filtration and SDS-polyacrylamide gel electrophoresis. The optimum pH and temperature for the CGTase activity were 9.0 and $80^{\circ}C$, respectively. The enzyme was stable in pH $8.0{\sim}11.0$ at $60{\sim}80^{\circ}C$. The activity of purified enzyme was activated by $K^+,\;Cu^{2+}$ and $Zn^{2+}$. The activity of the CGTase was inhibited by the treatment with 2,4-dinitrophenol and iodine. The result suggests that the purified enzyme has phenolic hydroxyl group of tyrosine, histidine imidazole group and terminal amino group at active site. The reaction of this enzyme followed typical Michaelis-Menten kinetics with the $K_m$ value of 18.182 g/L with the $V_{max}$ of 188.68 ${\mu}mole/min$. The activation energy for the CGTase was calculated by Arrhenius equation was 1.548 kcal/mol.

  • PDF