• Title/Summary/Keyword: Poly(DL-lactide-co-glycolide)

Search Result 18, Processing Time 0.031 seconds

Testosterone-encapsulated Surfactant-free Nanoparicles of Poly(DL-lactide-co-glycolide): Preparation and Release Behavior

  • Jeong, Young-Il;Shim, Yong-Ho;Song, Ki-Chan;Park, Youeng-Guen;Ryu, Hwa-Won;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1579-1584
    • /
    • 2002
  • Since surfactant or emulsifiers remained on the nanoparticle surface significantly affect the physicochemical properties, the biodegradation rate, the biodistribution, and the biocompatibility of nanoparticles, surfactant-free nanoparticles should be good candidate. surfactant-free PLGA nanoparticles were successfully prepared by both the dialysis method and the solvent diffusion method. The PLGA nanoparticles prepared using the solvent diffusion method has a smaller particle size than the dialysis method. The solvent diffusion method was better for a higher loading efficiency than the dialysis method but the nanoparticle yield was lower. Testosterone (TST) release from the PLGA nanoparticles was dependent on the particle size rather than the drug contents. Testosterone release from the PLGA nanoparticles prepared by the solvent diffusion method using acetone was faster than those prepared by the dialysis method. TST release from the PLGA nanoparticles prepared by the solvent diffusion method using acetone and the dialysis method using dimethylformamide (DMF) was completed for 4 days while the PLGA nanoparticles prepared by the dialysis method using acetone showed approximately 80% TST release after 4 days. Since the PLGA nanoparticle degradation ratio was below 20% within 5 days at all samples while TST release completed within 4 days, TST release was dependent on the diffusion mechanism rather than degradation.

All-trans Retinoic Acid Release from Surfactant-free Nanoparticles of Poly(DL-lactide-co-glycolide)

  • Jeong, Young-Il;Kim, Don-Gon;Jang, Mi-Kyeong;Nah, Jae-Woon;Kim, Yong-Bae
    • Macromolecular Research
    • /
    • v.16 no.8
    • /
    • pp.717-724
    • /
    • 2008
  • In this study, we prepared all-trans retinoic acid (ATRA)-encapsulated, surfactant-free, PLGA nanoparticles. The nanoparticles were formed by nanoprecipitation process, after which the solvent was removed by solvent evaporation or dialysis method. When a nanoparticle was prepared by the nanoprecipitation - solvent evaporation method, the nanoparticles were bigger than the nanoparticles of the nanoprecipitation - dialysis method, despite the higher although loading efficiency. Nanoparticles from the nanoprecipitation - dialysis method were smaller than 200 nm in diameter, while the loading efficiency was not significantly changed. Especially, nanoparticles prepared from DMAc, 1,4-dioxane, and DMF had a diameter of less than 100 nm. In the transmission electron microscopy (TEM) observations, all of the nanoparticles showed spherical shapes. The loading efficiency of ATRA was higher than 90% (w/w) at all formulations with exception of THF. The drug content was increased with increasing drug-feeding amount while the loading efficiency was decreased. In the drug release study, an initial burst was observed for $2{\sim}6$ days according to the variations of the formulation, after which the drug was continuously released over one month. Nanoparticles from the nanoprecipitation - dialysis method showed faster drug release than those from the nanoprecipitation - solvent evaporation method. The decreased drug release kinetics was observed at lower drug contents. In the tumor cell cytotoxicity test, ATRA-encapsulated, surfactant-free, PLGA nanoparticles exhibited similar cytotoxicity with that of ATRA itself.

Binding of Vaccine and Poly(DL-lactide-co-glycolide) Nanoparticle Modified with Anionic Surfactant (음이온성 유화제로 수식된 폴리락티드/글리코리드 공중합체 나노 입자와 백신의 결합성)

  • Choi, Min-Soo;Park, Eun-Seok;Chi, Sang-Cheol;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.3
    • /
    • pp.177-183
    • /
    • 2004
  • Recently, studies on intranasal mucosa delivery of influenza vaccine have been actively developed because of lack of pain and ease of administration. We studied on preparation of nanoparticle delivery system using biodegradable polymer as a poly(DL-lactide-co-glycolide) (PLGA) and their binding characteristics with vaccine. Three kinds of PLGA nanoparticles were prepared by spontaneous emulsification solvent diffusion (SESD) method using sodium dodecyl sulfate and sodium laurate as an anionic surfactant and Lutrol F68 (polyethylene glycol-block-polypropylene glycol copolymer) as a nonionic surfactant. The 5-aminofluorescein labeled vaccine was coated on the surface of nanoparticles by ionic complex. The complexes between vaccine and nanoparticles were confirmed by change of the size. After vaccine coating on the surface of anionic nanoparticles, particle size was increased from 174 to 1,040 nm. However the size of nonionic nanoparticles was not more increased than size of anionic nanoparticles. The amount of coated vaccine on the surface of PLGA nanoparticles was $14.32\;{\mu}g/mg$ with sodium dodecyl sulfate, $12.41\;{\mu}g/mg$ with sodium laurate, and $9.47{\mu}g/mg$ with Lutrol F68, respectively. In conclusion, prepared nanoparticles in this study is possible to use as a virus-like nanoparticles and it could be accept in the field of influenza vaccine delivery system.

Stereocomplex Poly(lactic acid) Discoidal Microparticles for Sustained Drug Release (약물지연방출을 위한 스테레오컴플렉스 PLA 원반형 마이크로입자)

  • Park, Chaewon;Park, Sanghyo;Kim, Woo Cheol;Key, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.62-66
    • /
    • 2020
  • Controlled drug release is important for effective treatment of cancer. Poly(DL-lactide-co-glycolide) acid (PLGA) is a Food and Drug Administration (FDA) approved polymer and have been extensively studied as drug delivery carriers with biodegradable and biocompatible properties. However, PLGA drug delivery carriers are limited due to the initial burst release of drug. Certain drugs require an early rapid release, but in many cases the initial rapid release can be inefficient, reducing therapeutic effects and also increasing side effects. Therefore, sustained release is important for effective treatment. Poly Lactic Acid stereo complex (PLA SC) is resistant to hydrolysis and has high stability in aqueous solutions. Therefore, in this work, PLGA based discoidal polymeric particles are modified by Poly Lactic Acid stereocomplex (PLAsc DPPs). PLAsc DPPs are 3 ㎛ in diameter, also showing a relatively sustained release profile. Fluorescein 5(6)-isothiocyanate (FITC) released from PLAsc DPPs was continuously observed until 38 days, which showed the initial release of FITC from PLAsc DPPs was about 3.9-fold reduced as compared to PLGA based DPPs at 1 hour.

Hybrid Biomaterial of PLGA Microspheres and Hyaluronic Acid as a Potential Injectable Bulking Agent for Urologic and Dermatologic Applications

  • Cho, Eui-Ri;Kang, Sun-Woong;Kim, Byung-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.644-647
    • /
    • 2003
  • Materials currently used as an injectable bulking agent in the dermatologic and urologic fields revealed several drawbacks such as particles migration, inflammatory reaction, allergic reaction, rapid volume shrinkage, and necessity of a donor site. In this study, we have developed injectable biomaterial comprising poly (DL- lactide-co-glycolide)(PLGA) and hyaluronic acid gel to overcome these problems. PLGA is a biocompatible synthetic material and hyaluronic acid is a common substance found in living organisms. We examined the feasibility of injection through needle and tested biocompatibility in animal model. After transplantation, injected sites and distant organs were examined histologically to verify a new tissue formation, inflammation, and particles migrations. Injected volume was maintained approximately 80 percent for 2 months. Results demonstrated that the developed material was injectable through various gauges of needles and induced a new bulking tissue formation without serious inflammatory reaction.

  • PDF

PLGA-Loaded Gold-Nanoparticles Precipitated with Quercetin Downregulate HDAC-Akt Activities Controlling Proliferation and Activate p53-ROS Crosstalk to Induce Apoptosis in Hepatocarcinoma Cells

  • Bishayee, Kausik;Khuda-Bukhsh, Anisur Rahman;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.518-527
    • /
    • 2015
  • Controlled release of medications remains the most convenient way to deliver drugs. In this study, we precipitated gold nanoparticles with quercetin. We loaded gold-quercetin into poly(DL-lactide-co-glycolide) nanoparticles (NQ) and tested the biological activity of NQ on HepG2 hepatocarcinoma cells to acquire the sustained release property. We determined by circular dichroism spectroscopy that NQ effectively caused conformational changes in DNA and modulated different proteins related to epigenetic modifications and c ell cycle control. The mitochondrial membrane potential (MMP), reactive oxygen species (ROS), cell cycle, apoptosis, DNA damage, and caspase 3 activity were analyzed by flow cytometry, and the expression profiles of different anti- and pro-apoptotic as well as epigenetic signals were studied by immunoblotting. A cytotoxicity assay indicated that NQ preferentially killed cancer cells, compared to normal cells. NQ interacted with HepG2 cell DNA and reduced histone deacetylases to control cell proliferation and arrest the cell cycle at the sub-G stage. Activities of cell cycle-related proteins, such as $p21^{WAF}$, cdk1, and pAkt, were modulated. NQ induced apoptosis in HepG2 cells by activating p53-ROS crosstalk and induces epigenetic modifications leading to inhibited proliferation and cell cycle arrest.

Effects of teat dipping disinfectant containing biodegradable iodophor microspheres on preventing dry period intramammary infection in dairy cows (생분해성 iodophor microsphere 함유 유두침지 소독제의 건유기 젖소에서의 유방내 신규감염 예방 효과)

  • Hwang, Cheol-Yong;Kim, Jong-Min;Youn, Hwa-Young;Han, Bo;Han, Hong-Ryul
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.1
    • /
    • pp.113-120
    • /
    • 2004
  • 1% iodophor loaded microspheres of PLGA (Poly[DL-Lactide-co-Glycolide]) were prepared by solvent evaporation method and were applied to the cows on dry period for evaluating it's preventive effects on intramammary infections. The morphology of the microspheres were evaluated using scanning electron microscopy and their releasing patterns were investigated. On investigating idophor releasing patterns of the microsphere, burst releasing pattern was detected until 2 days after in vitro incubation and sustained releasing was observed until 4 weeks. In field trial of teat dipping solution containing idophor loaded microspheres in dry cows showed significant preventive effects of intramammary infection caused by S. aureus, S. agalactiae, coagulase negative Staphylococci and coliform bacteria (p<0.05).