• Title/Summary/Keyword: Poloxamer 188

Search Result 16, Processing Time 0.017 seconds

A Hot Melt w/o/w Emulsion Technique Suitable for Improved Loading of Hydrophilic Drugs into Solid Lipid Nanoparticles (현탁된 고형지질나노입자 내로 친수성 약물의 봉입률을 증대시키기 위한 w/o/w 에멀션 가온용융유화법의 평가)

  • Lee, Byoung-Moo;Choi, Sung-Up;Lee, Jae-Hwi;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Recently increasing attention has been focused on solid lipid nanoparticles (SLN) as a parenteral drug carrier due to its numerous advantages that can come from both polymeric particle and fat emulsions, together with the possibility of controlled release and increasing drug stability. Lipophilic drugs such as paclitaxel, cyclosporin A, and all-trans retinoic acid have been successfully entrapped in SLN but the incorporation of hydrophilic drugs in SLN is very limited because of their very low affinity to the lipid. Therefore, as a new approach to improve the loading of hydrophilic drugs, a w/o/w emulsion technique has been developed. The primary objective of the current study was to improve the loading efficiency of a model hydrophilic drug, glycine (Log P = -3.44) into SLN. The proposed preparation process is as follows: A heated aqueous phase consisting of 0.1 ml of glycine solution in water (100 mg/ml), and poloxamer 188 (5 mg) were then added to a molten oil phase containing precirol (100 mg) and lecithin (5 mg). This mixture was dispersed by sonicator, leading to a w/o emulsion. A double emulsion (w/o/w) was formed after the addition of 2% poloxamer solution to the above dispersed system. After cooling the double emulsion, solid lipid nanosuspensions were successfully formed. The lipid nanoparticles had the mean particle size of 441.25 nm, and the average zeta potential of -20.98 mV. The drug loading efficiency was measured to be 8.54% and the drug loading amount was measured to be 0.92%. The w/o/w emulsion method showed an increased loading efficiency compared to conventional o/w emulsion method.

Preparation and Bioequivalence Test of Acetaminophen Liquid Suppository (아세트아미노펜 액상좌제의 제초 및 생물학적 동등성 평가)

  • 김종국;최한곤;이사원;고종호;이미경
    • Biomolecules & Therapeutics
    • /
    • v.6 no.2
    • /
    • pp.213-218
    • /
    • 1998
  • A novel in situ-gelling and mucoadhesive acetaminophen liquid suppository was developed to improve the patient compliance of conventional solid suppository. In this study, acetaminophen liquid suppository, Likipe $n_{R}$, [aminophen/Poloxamer 407/Poloxamer 188/so4ium alginate (5/15/19/0.6%)] with relation temperature at 30-36 "C and suitable gel strength and bioadhesive force, dissolution pattern similar to conventional solid type suppository, Suspe $n_{R}$, was developed. Furthermore, the bioequivalence of two acetaminophen products was evaluated in 16 normal male volunteers (age 22-27 yr, body weight 56-72 kg) following sidle rectal administration. Test product was Likipe $n_{R}$ suppository (Dong-Wha Pharm. Corp., Korea)and reference product was Suspe $n_{R}$204-212 suppository (Hanmi Pharm. Corp., Korea). Both products contain 125 mg of acetaminophen. Four Suppositories of the test and the reference product were administered to the volunteers, respectively, by randomized two period cross-over study (2$\times$2 Latin square method). The determination of acetaminophen was accomplished using HPLC. Average drug concentrations at each sampling time and pharmacokinetic parameters calculated were not significantly different between two products (p>0.05); the area under the curve to last sampling time (24 hr) (AU $Co_{-2}$4h/) (30.14$\pm$8.64 vs 27.98$\pm$ 6.53 $\mu$g .h/ml), maximum plasma concentration ( $C_{max}$) (3.29$\pm$0.87 vs 3.60$\pm$0.66 $\mu$g/ml) and time to maximum plasma concentration ( $T_{max}$) (2.91 $\pm$0.55 vs 2.69$\pm$0.60 h). The differences of mean AUCo $_{24h}$, C-a. and T-between the two products (7.18%, 9.58% and 7.53%, respectively) were less than 20%. The power (1-7) and treatment difference ($\Delta$) for AU $Co_{24h}$, $C_{max}$ and $T_{max}$ were more than 0.8 and less than 0.2, respectively at $\alpha$=0.1. The confidence limits for AU $Co_{24h}$, $C_{max}$ and $T_{max}$ (-0.81 ~13.55%, -1.56~ 17.60 and -3.81 ~18.87%, respectively) were less than $\pm$ 20% at $\alpha$=0.1. These results suggest that the bioavailability of Likipe $n_{R}$ suppository is not significantly different from that of Suspe $n_{R}$ suppsitory. Therefore, two products are bio-equivalent based on the current results.results.lts.sults.results.lts.

  • PDF

In Vivo Prediction and Biopharmaceutical Evaluation of Nicotine Transdermal Patch (생체내 예측 및 흰쥐를 이용한 니코틴 패취의 약물동력학적 평가)

  • Lee, Woo-Young;Baek, Seung-Hee;Park, Eun-Seok;Chi, Sang-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.4
    • /
    • pp.273-278
    • /
    • 2005
  • Nicotine transdermal therapeutic systems $(TTS_S)$ have been regarded as an effective mean to aid smoking cessation. However, most of nicotine $TTS_S$ in the market have some problems such as unpleasant side effects and skin irritation due to the excess amount of the drug permeated and the properties of the additives employed. In order to solve these problems, new nicotine $TTS_S$ were formulated using biocompatible additives. The optimized formula of the drug layer consisted of nicotine, propylene glycol and poloxamer 188 at the ratio of 1.2: 17.0: 2.0. The drug layer had the sickness of $1,250\;{\mu}m$, the pH of 8.12. The skin permeation rate of nicotine from optimized nicotine patch (NP) was $21.5\;{\mu}g/cm^2/h$. Transdermal administration of nicotine patch has been carried out for the determination of pharmacokinetic parameters in rats. Steady-state plasma concentration of nicotine following transdermal application of NP (area of patch = $15\;cm^2$) on the dorsal skin of rats was 143.2 ng/ml and AUC for 24 hrs was 3,022 ng h/ml. In case of $EXODUS^{\circledR}$ and Nicotinell $TTS^{\circledR}$, the steady-state plasma concentration of nicotine and ACU for 24 hrs were 428.9 ng/ml, $9,121\;ng{\cdot}hr/ml$ and 155.3 ng/ml, $3,152\;ng{\cdot}h/ml$, respectively. NP showed the experimental plasma nicotine concentration profile was very similar to the simulated one and had an appropriate skin permeation rate and a steady-state concentration of nicotine, which can show therapeutic blood levels of the drug for 24 hrs without severe side effects.

Preparation and Evaluation of Ketoprofen-incorporated Solid Lipid Nanoparticles (SLN) (케토프로펜을 함유하는 고형 지질 나노파티클의 제조 및 평가)

  • Baek, Myoung-Ki;Lee, Sang-Young;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.4
    • /
    • pp.245-256
    • /
    • 1996
  • Solid lipid nanoparticles (SLN) have been developed as a new drug delivery system. Although many particulate drug carriers, such as microsphere, liposome, niosome, emulsion, etc. have been introduced, they have some disadvantage; low efficiency of incorporation and stability, lack of reproducibility, and so on. Meanwhile, SLN as a new drug delivery system is known to entrap rugs with a high efficiency and a good reproducibility. Moreover, small size SLN can circulate in blood for a prolonged time. Although many preparation methods were introduced, microfluidization method is recommended to be the most useful. This study was attempted to prepare and evaluate ketoprofen-incorporated SLNs (keto-SLN), which were prepared by two methods, ultrasonication and microfluidization. Keto-SLN was evaluated by measurement of particle size and zeta potential, efficacy of entrapment, sedimentation volume, in virto release pattern. The mean particle size was about $0.1\;{\mu}m$, and the size was dependent on the type and the amount of emulsifier. Zeta potential was negative, $-9{\sim}-13mV$ and entrapment efficacy was very high and stability was good for at least 60 days in the respect of particle size and sedimentation volume ratio. Analgesic effect was also determined as well as pharmacokinetic parameters. The former was comparable to that of that of ketoprofen loaded suspension (keto-sus) and the latter revealed that consistent with the delayed release of keto-SLN. $T_{max}$ was longer than keto-sus. Therefore, keto-SLN was favourable dosage forms in the field of drug delivery system such as anti-cancer, analgesics and anti-inflammatory agents.

  • PDF

Preparation and evaluation of proliposomes formulation for enhancing the oral bioavailability of ginsenosides

  • Duy-Thuc Nguyen;Min-Hwan Kim;Min-Jun Baek;Nae-Won Kang;Dae-Duk Kim
    • Journal of Ginseng Research
    • /
    • v.48 no.4
    • /
    • pp.417-424
    • /
    • 2024
  • Background: This research main objective was to evaluate a proliposomes (PLs) formulation for the enhancement of oral bioavailability of ginsenosides, using ginsenoside Rg3 (Rg3) as a marker. Methods: A novel PLs formulation was prepared using a modified evaporation-on-matrix method. Soy phosphatidylcholine, Rg3-enriched extract, poloxamer 188 (Lutrol® F 68) and sorbitol were mixed and dissolved using a aqueous ethanolic solution, followed by the removal of ethanol and lyophilization. The characterization of Rg3-PLs formulations was performed by powder X-ray diffractometry (PXRD), transmission electron microscopy (TEM) and in vitro release. The enhancement of oral bioavailability was investigated and analyzed by noncompartmental parameters after oral administration of the formulations. Results: PXRD of Rg3-PLs indicated that Rg3 was transformed from crystalline into its amorphous form during the preparation process. The Rg3-encapsulated liposomes with vesicular-shaped morphology were generated after the reconstitution by gentle hand-shaking in water; they had a mean diameter of approximately 350 nm, a negative zeta potential (- 28.6 mV) and a high entrapment efficiency (97.3%). The results of the in vitro release study exhibited that significantly more amount of Rg3 was released from the PLs formulation in comparison with that from the suspension of Rg3-enriched extract (control group). The pharmacokinetic parameters after oral administration of PLs formulation in rats showed an approximately 11.8-fold increase in the bioavailability of Rg3, compared to that of the control group. Conclusion: The developed PLs formulation could be a favorable delivery system to improve the oral bioavailability of ginsenosides, including Rg3.

Preparation and Evaluation of Liquid Suppository Containing Prostaglandin $E_1-loaded$ Microemulsion (프로스타글란딘 $E_1$ 마이크로에멀젼이 함유된 액상좌제의 제조 및 평가)

  • Kim, Chung-Hwan;Lee, Sa-Won;Park, Kyung-Mi;Choi, Han-Gon;Kim, Chong-Kook
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.3
    • /
    • pp.167-172
    • /
    • 2000
  • The purpose of this study is to develop a transurethral liquid suppository containing prostaglandin $E_1\;(PGE_1)-loaded$ microemulsion, which undergoes a phase transition to gels at body temperature. The effects of oils, ethanol as solvent and HCl as pH-controlling agent on the physicochemical properties of liquid suppositories composed of poloxamer P 407, P 188 and carbopol was investigated. The stability of $PGE_1$ and release of $PGE_1$ from liquid suppository were evaluated. Oils such as Neobee and soybean oil significantly decreased the gelation temperature but increased the gel strength of liquid suppository due to their strongly binding with the components of liquid suppository base. However, ethanol slightly did the opposite. The pH of liquid suppositories hardly affected the gelation temperature and gel strength due to addition of very small HCl (0.005-0.01%). A liquid suppository [$PGE_1/P$ 407/P 188/carbopol/Neobee/ethanol/HCl (0.2/14/14/0.4/7/2/0.005%)], which had the gelation temperature $(34.2{\pm}0.6^{\circ}C)$ and gel strength $(31.35{\pm}4.37\;sec)$ suitable for liquid suppository system, was easily administered and not leak out from the body. About 60% of $PGE_1$ was released out within 2 h from this formulation. It was shown that the release of $PGE_1$ was proportional to the square root of time, indicating that $PGE_1$ might be released from the suppository by Fickian diffusion. It was stable at $4^{\circ}C$ for at least 2 months. The results suggest that transurethral liquid suppository containing prostaglandin $E_1-loaded$ microemulsion is thought to be a convenient, safe and effective dosage form for $PGE_1$. However, it should be further developed as a more convenient and stable dosage form for $PGE_1$.

  • PDF