• Title/Summary/Keyword: Pollution inflow

Search Result 186, Processing Time 0.024 seconds

Improvement of Dimensional Accuracy for a Solenoid Valve Case for an 8-Speed Automatic Transmission by Using Multistage Drawing (프로그레시브 공정을 이용한 8단 자동변속기용 솔레노이드 밸브케이스 치수정밀도 향상)

  • Kim, T.H.;Bae, W.B.;Bae, J.H.;Kim, C.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.442-449
    • /
    • 2013
  • The solenoid valve case of an 8-speed automatic transmission plays a role in maintaining the valve seal, which prevents an inflow of foreign substances into the transmission. The seal increases the reliability of the automatic transmission's performance. As a solution to pollution-related problems and to reduce fuel consumption, transmissions are being made with more gears to work more economically and have reduced fuel consumption. These newer transmission require greater dimensional tolerances and need to be manufactured with more precision. In the current study, the design of a multistage drawing considering both the product's height and limit draw ratio (LDR) of the material was performed using both a theoretical analysis and the expertise of industrial experts. The finite element modeling (FEM) simulation was performed using the commercial software, PAM-stamp, and tests of the dimensional measurements for a prototype were performed to verify the optimal progressive process.

Characteristics of Organic Matters in the Suyeong River During Rainfall Event (강우 시 수영강 유역 내 유기물질의 특성)

  • Kim, Suhyun;Kim, Jungsun;Kang, Limseok
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.5
    • /
    • pp.487-493
    • /
    • 2018
  • Urban stormwater runoff is the one of the most extensive causes of deterioration of water quality in streams in urban areas. Especially, in the Suyeong River watershed, non-point sources from urban-residential areas are the most common cause of water pollution. Also, it has been ascertained that BOD and COD as indexes of organic matter, have limitation on management of Suyeong River's water quality. In this study, changes of organic matter properties of Suyeong River from inflow of non-point source during rainfall were investigated. Fractions of organic matters were analyzed using water samples collected at two sites (Suyeong River and Oncheon Stream) during a rain event. Variations of dissolved organic carbon (DOC) concentration by rainfall were similar to flow rate change in the river. Distribution of organic matter fraction according to change of rain duration revealed that while hydrophilic component increased at initial rainfall, the hydrophobic component was similar to change in dissolved organic carbon (DOC) concentration. Also, the relative proportion of hydrophilic components in organic matter in river water increased, due to rainfall. Results of biodegradation of organic matters revealed that decomposition rate of organic matters during rainfall was higher than that of during a non-rainfall event.

Water Quality Modeling for Intake Station by 2-dimensional Advection-Dispersion Model (2차원 이송-확산 모형을 이용한 취수장 유입 수질 예측)

  • Kim, Jae-Dong;Kim, Ji-Hoon;Kim, Young-Do;Song, Chang-Geun;Seo, Il-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.667-679
    • /
    • 2011
  • In this study, the influences of pollutant from Dae-po Stream and So-gam Stream located at the downstream of Nak-dong River on the water quality at Mul-geum water intake station were analyzed using RAMS model. Field measurements of velocity by ADCP, and water quality distribution of BOD and TP by water sampling were carried out to present the input and verification data for numerical simulations. The comparison between RAM2 and ADCP measurement, which aimed for the analysis of 2-D velocity distribution around Mul-geum water intake station showed that two results matched well along the spanwise direction. The prediction of pollutant concentration by RAM4 agreed fairly well with the measured data except for the points nearby right banks in the vicinity of tributary pollutant source. Flushing effect by the increase of mainstream discharge in Nak-dong River was analyzed to provide the damage mitigation in preparation for the accidental water pollution. With increasing mainstream discharge, high velocity and increased water quantity induced increasing dilution effect, thereby decreasing the inflow pollutant concentration rapidly.

The Development of Corrosion Standard System of Water and Wastewater in Soil Environment (상·하수도 배관재의 토양환경에서의 부식표준시스템 개발)

  • Park, Kyeong-Dong;Shin, Yeong-Jin;Lee, Ju-Yeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.7-12
    • /
    • 2006
  • Galvanized steel pipe, copper pipe and stainless steel pipe, which is being used in waterworks piping materials. In case of galvanized steel pipe, the precipitation of a product is being generated due to the pollution of the tap water, a white water phenomenon, and various corrosion reaction because a zinc ion is melted by tap water. And in case of a cupper pipe, many problems which is harm in sanitation appeared because of a inflow of harmfulness substance by a frequent accident of a water leakage. So, to prevent these problems, it is substituted for stainless steel pipe. However, those problems is still occurring because of badness of welding, a problem of a water leakage in connection part, and a increment of construction expenses. Therefore, this research has examined the laying period according to each piping thickness and a corrosion shape according to each laying depth after laying in various soils(sandy loam, loamy, clay loam, clay) using galvanized steel pipe, copper pipe, and stainless steel pipe. That is, we has studied the data which is necessary for a rational method of preserving the quality of water by examining the corrosion properties of piping materials in the soil environment which waterworks piping materials is being used.

  • PDF

Water Quality Evaluation on the Bottom Water of Masan Bay by Multivariate Analysis (다변량 해석에 의한 마산만 저층수의 수질평가)

  • Lee, Mu-kang;Hwang, Jeung-Wook;Choi, Young-Kwang
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 1996
  • During the last two decades, many industrial complexes for heavy and chemical industries have been established along the Korean coastline, thereby increasing the pollution materials burden on the coastal environment of seawater. Masan Bay is one of the most polluted coastal areas in Korea and the main soures of pollutants are domestic and industrial wastewater from Masan, Changwon. This study was aimed to evaluate relationships among the physicochemical parameters in the bottom water of Masan bay and to examine environmental factors affecting to pollutions of seawater by factor analysis. 'rife factor loading, 1 is showed higher increasing inclination after 1989 year in station 1. The variance of pollutant materials is showed 43.7% in which the coastal inflow water is indicated external loadings(factor 1 : NO3--N, TN, factor 4 : SiO2-Si) corresponded to domestic sewage, industrial wastewater, and earth-sands in the bottom water of Masan bay And the internal loadings(factor 2 : SS, salinity, factor 3 . W.T., DO) are explained 33.8%'corresponded the phenomena of sedimentary layer and oxygen concentration. Therefore, The external loadings are explained by the higher factor pollutantal variance in Masan bay.

  • PDF

Property of Water Environment and Evaluation of Zooplankton as Predators for the Control of Algal Bloom in the Agricultural Reservoir (농업용저수지의 녹조제어를 위한 수환경 특성과 포식성 천적생물의 분리 및 효과분석)

  • Nam, Gui-Sook;Song, Young-Hee;Lee, Eui-Haeng;Hong, Dae-Byuk;Han, Myung-Soo
    • KCID journal
    • /
    • v.18 no.1
    • /
    • pp.33-43
    • /
    • 2011
  • Jundae reservoir has basin area of 234ha, average depth of 3.77m and total storage of $619{\times}10^3m^3$, and is located in Dangin-gun, Chungcheongnam-do. The water quality of Jundae reservoir exceeded the IV grade of water quality standard as available for irrigation water in COD, TN, TP, Chl-a. COD and Chl-a were higher in spring season, because the algal bloom by phytoplankton increased. And the algal blooms in October by inflow non-point pollution during summer rainy season. The most dominant zooplankton was rotifers during study period at all stations. Dominant species were Keratella cochlearis, Polyarthra spp., and Trichocerca spp. We successfully established 2 isolated clone cultures as predator. One is Rotifer, Euchlanis sp. and another is cladocerans, Bosmina sp. To test the removal rate of 2 cultures against Microcystis aeruginosa, we inoculated Euchlanis sp. and Bosmina sp. separately when the abundance reached at $1.0{\times}10^6$cells/ml. Euchlanis sp. removed M. aeruginosa around 98.9% and Bosmina sp. removed it around 98.4%. They are useful grazers for controling algae blooms, Euchlanis sp. and Bosmina sp. feeding on M. aeruginosa highly.

  • PDF

Analysis of Benthic Macroinvertebrate Community Structure and Stability in Major Inflow Streams of Lake Andong and Lake Imha (안동·임하호 주요 유입지천의 저서성 대형무척추동물 군집구조 및 군집안정성 분석)

  • You, Hyuk;Lee, Mi Jin;Seo, Eul Won;Lee, Jong Eun
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.320-328
    • /
    • 2016
  • This study was conducted to provide important basic information about effective management of the marine environment at major inflow streams in Lake Andong and Lake Imha. The investigation was conducted 8 times from May, 2015 (AD1, AD2, IH1, IH2) to September, 2016 (AD3, AD4, IH3, IH4), and 8 surveyed sites were selected at Lake Andong (4 sites) and Lake Imha (4 sites). The inquiry identified 114 species, $59,913.7inds.\;m^{-2}$ in Lake Andong and 112 species, $39,038.4inds.\;m^{-2}$ in Lake Imha. The results indicate that the number of species and individuals in Lake Andong is more than that in Lake Imha, because Lake Andong has a variety of riparian vegetation and a richness of organic materials. Community analysis at Lake Imha revealed a dominant index of 0.57 (${\pm}0.18$), a diversity index of 2.87 (${\pm}0.31$), an evenness index of 0.73 (${\pm}0.04$), and a richness index of 4.17 (${\pm}0.71$). The results of functional feeding group analysis showed that a high proportion of species and individuals are gathering collectors. The results of functional habitat group analysis showed that a high proportion of species and individuals are clingers. The result of a physico-chemical water assay and dissolved oxygen and electric conductivity tests revealed that these measures increased when the water temperature decreased. The result of Pearson's correlation analysis by biological factors and physico-chemical factors showed that species and electric conductivity are highly correlated with one another. Major inflow streams of Lake Andong and Lake Imha were exposed to various point pollution sources and non-point pollution sources. This implies a necessity for continuous monitoring of the aquatic ecosystems in order to effect systematic water quality management of Lake Andong and Lake Imha.

Study of Spatiotemporal Variations and Origin of Nitrogen Content in Gyeongan Stream ( 경안천 내 질소 함량의 시공간적 변화와 기원 연구)

  • Jonghoon Park;Sinyoung Kim;Soomin Seo;Hyun A Lee;Nam C. Woo
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.139-153
    • /
    • 2023
  • This study aimed to understand the spatiotemporal variations in nitrogen content in the Gyeongan stream along the main stream and at the discharge points of the sub-basins, and to identify the origin of the nitrogen. Field surveys and laboratory analyses, including chemical compositions and isotope ratios of nitrate and boron, were performed from November 2021 to November 2022. Based on the flow duration curve (FDC) derived for the Gyeongan stream, the dry season (mid-December 2021 to mid-June 2022) and wet season (mid-June to early November 2022) were established. In the dry season, most samples had the highest total nitrogen(T-N) concentrations, specifically in January and February, and the concentrations continued to decrease until May and June. However, after the flood season from July to September, the uppermost subbasin points (Group 1: MS-0, OS-0, GS-0) where T-N concentrations continually decreased were separated from the main stream and lower sub-basin points (Group 2: MS-1~8, OS-1, GS-1) where concentrations increased. Along the main stream, the T-N concentration showed an increasing trend from the upper to the lower reaches. However, it was affected by those of the Osan-cheon and Gonjiamcheon, the tributaries that flow into the main stream, resulting in respective increases or decreases in T-N concentration in the main stream. The nitrate and boron isotope ratios indicated that the nitrogen in all samples originated from manure. Mechanisms for nitrogen inflow from manure-related sources to the stream were suggested, including (1) manure from livestock wastes and rainfall runoff, (2) inflow through the discharge of wastewater treatment plants, and (3) inflow through the groundwater discharge (baseflow) of accumulated nitrogen during agricultural activities. Ultimately, water quality management of the Gyeongan stream basin requires pollution source management at the sub-basin level, including its tributaries, from a regional context. To manage the pollution load effectively, it is necessary to separate the hydrological components of the stream discharge and establish a monitoring system to track the flow and water quality of each component.

Eutrophication in the Namhae Coastal Sea 2. The Aspects of Eutrophication of Bottom Mud and Surface Seawater in the Namhae Coastal Seas (남해 연안해역의 부영양화 2. 남해 연안해역의 저질 및 수질의 부영양화 실태)

  • Kim, Sung-Jae
    • Journal of Wetlands Research
    • /
    • v.3 no.2
    • /
    • pp.107-118
    • /
    • 2001
  • The aim of this paper is to grasp eutrophication aspects in Namhae coastal seas, statistically analyzing existing data for their surface seawater and bottom mud. A pollution level(ignition loess) of bottom mud, on the whole, trended to increase as moving the coastal sea around Mokpo-Wando toward the east(Gyeongnam Namhae coastal seas). Especially, the pollution level(ignition loss=10.5%) of bottom mud for the coastal sea around Tongyeong-Keoje-Gosung was similar to that(10.3%) for the coastal sea around Masan-Jinhae, whose coastal marine pollution was the severest in Namhae coastal seas. It indicates that large amounts of pollutant from aqualculture facilities have been, thus far, accumulated on the coastal sea around Tongyeong-Keoje-Gosung, considering there was no significant inflow of sewage and industrial wastewater into this coastal sea. A COD, T-N, and T-P level of surface seawater, on the whole trended to increase as moving the coastal sea around Mokpo-Wando toward the east(Gyeongnam Namhae coastal seas). A COD level appeared to be the second grade of coastal water quality over the entire year throughout all Namhae coastal seas A T-N level exceeded the third grade of coastal water quality throughout all Namhae coastal seas except the coastal sea around Mokpo-Wando. Especially, a T-N level exceeded as many as three and six times over the third grade of coastal water quality in the coastal sea around Tongyeong-Keoje-Gosung and Masan-Jinhae, respectively. A T-P level appeared to be the second grade of coastal water quality in the coastal sea around Mokpo-Wando and the third grade of coastal water quality in the coastal sea around Yosu-Narnhae and Tongyeong-Keoje-Gosung, while it exceeded as many as two times over the third grade of coastal water quality. A degree of eutrophication of the surface seawater was 1.5 in the coastal sea around Mokpo-Wando and 11.9 In the coastal sea around Tongyeong-Keoje-Gosung, gradually increasing as moving toward the east(Gyeongnam Narnhae coastal seas). It sharply increased to 146.1 in the coastal sea around Masan-Jinhae. Because the degree of eutrophication throughout all Namhae coastal seas exceeded 1, a red tide organism could pose a possibility of proliferation at any place of Namhae coastal seas if other requirements were satisfied. It indicates that a red tide may move to another place once a red tide breaks out at a place of Namhae coastal seas.

  • PDF

Geochemical Characteristics and Origin of Dissolved Ions in the Han River Water (한강 하천수 중 용존이온의 지구화학적 특성과 기원)

  • 김규한;심은숙
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.539-553
    • /
    • 2001
  • Geochemical data of the Han river water, including four tributary water samples in the main Han river are presented in this paper. The concentration of dissolved ions in the North Han river water decreases in order of Ca>Na>K>Mg and HCO$_3$>NO$_3$>SO$_4$>Cl, which it mainly affected by the chemical weathering of granite and gneiss in the drainage basin. Meanwhile, the South Han river water shows a decreasing order of Ca>Mg>Na>K and HCO$_3$>SO$_4$>NO$_3$>Cl, which is controlled by the bed rock geology of carbornate rooks and the inflow of acid mine drainage from the metal and coal mines in the Taebaegsan and Hwanggangri areas. The main Han river waters are characterized by unusually high concentration of Na, Cl and SO$_4$ (Ca>Na>K>Mg and HCO$_3$>SO$_4$>CI>NO), indicating a significant anthropogenic pollution by human activities in the metropolitan Seoul city. The geochemical data of the Han river waters from 1981 through 1996 to 1999 records a significant increase in SO$_4$ and NO$_3$, which responsible for the increasing arid mane drainage and municipal anthropogenic pollution.

  • PDF