• Title/Summary/Keyword: Pollution Load

Search Result 663, Processing Time 0.024 seconds

Evaluation of Water Quality Goal and Load Allocation Achievement Ratio in Guem River Total Maximum Daily Loads for the 1st Phase (금강수계 1단계 수질오염총량관리제의 목표수질 및 할당부하량 달성도 평가)

  • Park, Jae Hong;Oh, Seung Young;Lee, Jae Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.859-865
    • /
    • 2012
  • It is necessary to evaluate performances hitherto carried out in the management of Total Maximum Daily Loads (TMDLs) and to set up direction so that this system can be improved continuously in the future. This study was investigated load allocation achievement ratio, water quality goal achievement ratio and interrelation between water quality goal and load allocation for the first period (2004~2010). Load allocation achievement and BOD water quality goal achievement ratio were 50% and 73% in Guem River Basin, respectively. The main reason for excess of load allocation and shortfall of water quality goal were unfulfilled reduction plan and pollution sources increment. Therefore, it is necessary to develop enhanced pollution sources prediction method and make a list realizable reduction plan. 63% of the unit watershed was not interrelation between water quality goal and load allocation. The reason why water quality goal and load allocation had not correlation were water quality of upper unit watershed, increment of inflow quantity, effluent water quality of wastewater treatment plant affected the unit watershed, increment of inner productivity by algae, water quality deterioration during the specific period, river management flow, etc.

Application of the Load Duration Curve (LDC) to Evaluate the Achievement Rate of Target Water Quality in the Han-River Watersheds (부하지속곡선(Load Duration Curve; LDC)을 이용한 한강수계 오염총량관리 목표수질 평가방법 적용 방안)

  • Kim, Eunkyoung;Ryu, Jichul;Kim, Hongtae;Kim, Yongseok;Shin, Dongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.732-738
    • /
    • 2015
  • Water quality in four major river basin in Korea was managed with Total Maximum Daily Load (TMDL) System. The unit watershed in TMDL system has been evaluated with Target Water Quality (TWQ) assessment using average water quality, without considering its volume of water quantity. As results, although unit watershed are obtained its TWQ, its allocated loads were not satisfied and vice versa. To solve these problems, a number of TWQ assessments with using Load Duration Curve (LDC) have been studied at other watersheds. The purpose of this study was to evaluate achievement of TWQ with Flow Duration Curve (FDC) and Load Duration Curve(LDC) at 26 unit watersheds in Han river basin. The results showed that achievement rates in TWQ assessment with current method and with LDC were 50~56 % and 69~73%, respectively. Because of increasing about 20% of achievement rates with using LDC, the number of exceeded unit watershed at Han river Basin was decreased about 4~6 unit watersheds.

Optimum Flow and Pollution Load Monitoring Time of Combined Sewers of Urban Watersheds during Dry Weather (비강우시 도시 합류식 하수도의 오염부하 산정을 위한 최적관측시간 산정연구)

  • Choi, Yong-Hun;Won, Chul-Hee;Park, Woon-Ji;Seo, Ji-Yeon;Shin, Min-Hwan;Lee, Chan-Ki;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.3
    • /
    • pp.9-14
    • /
    • 2009
  • Flow and pollution load were monitored at 2 combined sewer outlets (C-1 and C-2) of urban watersheds during dry weather from September, 2004 to April, 2006 for 20 months. The objectives were to investigate the diurnal variation of flow and pollutant load and to find the proper sampling time that could measure representative flow and pollutant load. Pollution load closed to the average daily load at C-1 could be measured at 00:00 hour and by the mean of 15:00 and 18:00 hour measures, and 15:00 and 21:00 hour measures, respectively. In addition at C-2, it was 21:00 hour and the mean of 15:00 and 18:00 hour measures. This study concluded that arbitrary sampling of flow and water quality could cause large errors in the estimation of urban pollution load and recommended that urban combined sewers should be monitored when flow and water quality showed daily average and concentration.

An Analysis on the Relationship between Discharge and Pollution Load on the Tributary Basin of Kum River (금강지류 유역에서의 유출량과 오염부하량의 상관관계 분석)

  • Jeong, Sang-Man;Im, Gyeong-Ho;Choe, Jeong-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.527-536
    • /
    • 2000
  • This study estimates the pollution load in a basin by regional groups analyzing the relationship between the discharge and pollution load. The study area is placed in the Miho stream basin known as the main tributary of the Kum river. Four major Telemetary streamflow stations are chosen. In this research, discharge and water quality in a dry season and a flood season from the observed discharge in the stream are analyzed. The Rating-Curve and the Pollutograph are drawn analyzing discharge and water quality at the major stations. The characteristics of runoff for each stream are analyzed and the change of water quality are analyzed for rainfall period. The relationship between discharge and water quality has been investigated. The relationship between the discharge and pollution load is analyzed and a representative equation is derived. These relationships permit an estimates of the pollution load at the Miho stream basin. basin.

  • PDF

Application of Margin of Safety Considering Regional Characteristics for the Management of Total Maximum Daily Loads (지역특성을 고려한 수질오염총량관리 안전부하량 적용)

  • Park, Jun Dae;Oh, Seung Young;Kim, Yong Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.3
    • /
    • pp.351-360
    • /
    • 2014
  • The allocation of margin of safety (MOS) at a uniform rate to all areas of the unit watershed makes it very difficult to keep the load allotment stable in the area for lack of reduction measures like forest land. This study developed an equation to calculate margin of safety differentially according to the regional characteristics. The equation was formulated on the basis of the regional characteristic factors such as a load contribution factor for land use type and a site conversion factor for the unit watershed. The load contribution factor represents a contribution of loads from a particular land use. The site conversion factor was derived from the site conversion ratio of a unit watershed. Margin of safety for the non-point pollution load in the land use sector decreased by 20~25% in three river basins. The margin of safety in the unit watersheds with low site occupation ratios decreased in high rate, while in the unit watersheds with large urban area decreased in low rate. With the application of the differential margin of safety considering regional characteristics, not only the reduction of pollution loads can become lighter but also it can be easier to develop plans for Total Maximum Daily Loads (TMDLs) even where the reduction measures are not available.

Identifying Priority Area for Nonpoint Source Pollution Management and Setting up Load Reduction Goals using the Load Duration Curve (부하지속곡선을 이용한 비점오염원 우선관리 지역 선정 및 관리목표 설정 연구)

  • Jang, Sun Sook;Ji, Hyun Seo;Kim, Hak Kwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.17-27
    • /
    • 2018
  • The objective of this study is to identify the priority area where the nonpoint source pollution (NPS) management is required and to set up the load reduction goals for the identified priority area. In this study, the load duration curve (LDC) was first developed using the flow and water quality data observed at 286 monitoring stations. Based on the developed LDC, the priority area for the NPS pollution management was determined using a three-step method. The 24 watersheds were finally identified as the priority areas for the NPS pollution management. The water quality parameters of concern in the priority areas were the total phosphorus or chemical oxygen demand. The load reduction goals, which were calculated as the percent reduction from current loading levels needed to meet target water quality, ranged from 67.9% to 97.2% during high flows and from 40.3% to 69.5% during moist conditions, respectively. The results from this study will help to identify critical watersheds for NPS program planning purposes. In addition, the process used in this study can be effectively applied to identify the pollutant of concern as well as the load reduction target.

The Estimation of Pollution Loads in First-flush Overflows with Various Rainfall and Regional Characteristics (강우 및 지역특성별 초기우수월류에 의한 오염부하 기여도 평가)

  • Kim, Hongtae;Shin, Dongseok;Kim, Yongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.622-631
    • /
    • 2014
  • The purpose of this research was to find a proper disposal rainfall extent to improve water quality. SWMM was applied to select catchment area and tested first flush load and rainfall extent. BOD 40mg/L was selected to dispose the first flush and sewer overflow with the same as the criteria of Sewerage Act. Design rainfall, BOD load ratio of first flush sewer overflow, and the ratio of disposal flow were analyzed under various rainfall distribution. BOD load and design rainfall to treat overflow in situation of first flush extent with 4.3~17.4% were 56~87% and 3.8~6.8 mm/day, respectively. In urban area, first flush loads were not correspond to land activities, but tend to increase with increasing rainfall amount and drainage area. The more the distribution of rainfall is similar to Huff-frontal or central distribution of rainfall, the more increase the first flush loads.

Effect of NPS Loadings from Livestock on Small Watersheds (축산농가에서 배출되는 비점오염 물질이 소규모 유역에 미치는 영향)

  • Lee, Su In;Shin, Min Hwan;Jeon, Je Hong;Park, Byeong Ky;Lee, Ji Min;Won, Chul Hee;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.27-36
    • /
    • 2015
  • The objective of this paper was to quantitatively analyze the effect of concentrated animal feeding operations (CAFO) NPS pollution on a small watershed water quality. Monitoring was conducted from March to October, 2013. Monthly flow rate and selected water quality at each monitoring site were measured during dry days. Rainy day monitoring also was conducted. Modeling was conducted to evaluate the effect of CAFO NPS pollution on the water quality at the watershed outlet. The highest and mean concentration of selected water quality indices during rainy days were higher than those in dry days in general. The highest TN concentration measured at the CAFP pollution discharge point was 237.831 mg/L. The results revealed that the CAFO NPS pollution sources could be equally blamed for the water quality degradation of the stream. However, the effect of the NPS pollution from CAFOs seemed not to be very influential to the watershed water quality at the outlet. SWAT modeling revealed that the TN load was reduced by 18.95 %, 23.39 % and 30.53 % at the watershed outlet if the TN load at the CAFO NPS pollution discharge point reduced by 20 %, 40 % and 60 %, respectively. It was thought that the natural attenuation processes played an important role. The modeling was based only on the assumption of the load reduction and not verified by the monitored data. Therefore, it was suggested that a long term monitoring studies for the evaluation of the impact of CAFO NPS pollution on the watershed water quality be conducted.

Research on the Applicability of the Load Duration Curve to Evaluate the Achievement of Target Water Quality in the Unit Watershed for a TMDL (수질오염총량 단위유역의 목표수질 달성여부 평가를 위한 부하지속곡선 적용성 연구)

  • Hwang, Ha-Sun;Park, Bae-Kyung;Kim, Yong-Seok;Park, Ki-Jung;Cheon, SeUk;Lee, Sung-Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.885-895
    • /
    • 2011
  • The purpose of this study was evaluated on achievement of the Target water quality (TWQ) with Load Duration Curve (LDC) as well as materials collected through the implementation of Total Maximum Daily Load (TMDL), targeting 41 unit watersheds in the Nakdong River Basin in korea, and examines the adequacy of the LDC method to evaluate the TWQ by comparing methods through current regulations. It aims to provide basic materials for TMDL development in Korea. This determination resulted from the fact that the measured data placed on the LDC mean that they are beyond TWQ in a certain condition of water flow when actually measured load values were displayed in a form of LDC. In addition to water quality surveys, it is considered that information on the level of damage in a water body by water flow grade can be utilized as a basic material to identify compliance with the total admitted quantity, and establish rational plans to improve water quality. This information helps in the identification of the degree of damage in water quality according to water flow.

Comparison of Non-Point Pollution Occurrence by Amount of Fertilizer Applicetion from Sandy Loam Alpine Fields which Cultivetes Poteto and Radish in Korea (감자와 무를 재배하는 사질양토 고랭지 밭의 시비량에 따른 비점오염 발생량 비교)

  • Choi, Yong Hun;Won, Chul Hee;Park, Woon Ji;Shin, Min Hwan;Shin, Jae Young;Lee, Su In;Yang, Hee Jeong;Choi, Joong Dae
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.40-49
    • /
    • 2012
  • This study was performed to monitor the runoff of sandy soils on alpine uplands between March 2008 and December 2009, and assess non-point source pollution load. The fields were used to cultivete poteto in 2008 and radish in 2009. The fertilizers used in 200S, compared to those used in 2009, contained 2.1 times of nitrogen, 1.9 times of phosphorous, and 2.3 times of potassium. In 2008, the annual pollution load indiceted SS 2,908.47kg/ha/yr, COD 67.95kg/ha/yr, BOD 50.72kg/ha/yr, TN l3.29kg/ha/yr, and TP 9.97kg/ha/yr. In 2009, the annual pollution load indiceted SS 3,908.34kg/ha/yr, COD 225.04kg/ha/yr, BOD 156.96kg/ha/yr, TN 18.88kg/ha/yr, and TP 36.41kg/ha/yr. The amount of fertilizers used was about twice greeter in 2008, but the amounts of TN in pollution load per unit of rainfall were similar by 0.031kg/ha/mm to 0.029kg/ha/mm, whereas the amounts of COD (0.16kg/ha/mm to 0.35kg/ha/mm), BOD (0.12kg/ha/mm to 0.24kg/ha/mm), and TP (0.023kg/ha/mm to 0.057kg/ha/mm) doubled in 2009. We can infer thet the surface covering by the growth of crop mainly affected the transport of T-N through the subsurface flow to reduce non-point source pollution.

  • PDF