• Title/Summary/Keyword: Pollution Emission

Search Result 1,126, Processing Time 0.028 seconds

Estimation of Vehicle Kilometers Travelled and Air Pollution Emission from Motorcycles (이륜차의 일 주행거리조사와 대기오염 배출량 추정)

  • Jang, Young-Kee;Kim, Jeong;Kim, Pil-Su;Shin, Yong-Il;Kim, Woon-Soo;Choi, Yu-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.48-56
    • /
    • 2010
  • Recently it has reported that the motorcycle is a major source of air pollution in urban area by many studies. But the air pollution emission from motorcycle has been high uncertainty due investigation of a lack of activity data and emission factors in Korea. So in this study, the population of moped and VKT (Vehicle kilometers travelled) of motorcycle are investigated for calculation of the emission from this source categories. As the results, the population of moped is estimated as about 400, 000 and corresponded as 23% of registrated motorcycle which is larger than 50 cc in engine displacement. And it is found that the VKT of moped and motorcycle are investigated as 19.1 km/day and 32.3 km/day. Annual air pollution emission from motorcycle and moped are estimated by investigated VKT and updated emission factors. The nationwide emissions of PM_{10}, CO, $NO_x$, VOC are calculated as 910 ton/yr, 208, 198 ton/yr, 3, 032 ton/yr and 25, 575 ton/yr in 2008. The contribution ratio of CO, VOC emission from these sources are estimated as 29%, 24% in on-road transport sector and it is confirmed that motorcycle and moped are major air pollution sources in urban area.

Exhaust VOCs Emission Characteristics from Motor Vehicles (자동차의 배기관 VOCs 배출 특성)

  • Lyu, Young-Sook;Ryu, Jung-Ho;Han, Jong-Soo;Kim, Sun-Moon;Lim, Cheol-Soo;Kim, Dae-Wook;Lee, Dong-Min;Lee, Joong-Koo;Eom, Myung-Do;Kim, Jong-Choon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.3
    • /
    • pp.275-283
    • /
    • 2008
  • Since mobile source is a major source of VOCs, quantifying emissions from motor vehicles is an important factor to control VOCs in atmosphere. In this study, in order to evaluate tailpipe VOCs emissions from motor vehicles, mass emissions of non-methane volatile organic compounds from 45 vehicles were determined. Measurements were made on a chassis dynamometer using CVS-75 mode and speed specific drive modes. Target VOCs are 53 compounds determined as the volatile ozone precursors. The individual VOCs composition of vehicle emission and emission rates were also determined. In case of gasoline vehicles, VOCs emission from over 80,000 km vehicles were about 46% larger than less 80,000 km vehicles. The difference in benzene and toluene according to driving mileage was 44% and 26% respectively. The composition of VOCs were different by fuel type. The order of VOCs composition was paraffins>aromatics>olefins in gasoline vehicle emissions, paraffins>olefins>aromatics in light duty diesel vehicle emissions. The VOCs emissions were decreased as vehicle speed increasing. These results will be used to calculate total VOCs emissions from automobiles in the future.

A Study on the Estimation of Emission Factors for Greenhouse Gas (CO2) in Cement Industry (시멘트 산업부문 온실가스(CO2) 배출계수 산정 연구)

  • Song, H.D.;Hong, J.H.;Um, Y.S.;Lee, S.B.;Kim, D.G.;Kim, J.S.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.158-168
    • /
    • 2007
  • The cement industry is one of the energy intensive industries such as petrochemical and steel industry. The energy efficiency of cement industry is high comparing to oversea's cement industries due to the enforcement of energy conservation policies. The purpose of this study is estimate emission factors for greenhouse gas ($CO_{2}$) in cement industry. The results of field study, quicklime contained quantity of five factories were $0.64{\sim}0.65$. Measurement emission (15,382 ton/day) is 40% higher than process emission (8,929 ton/day) on the IPCC Guidelines (1996). Add to combustion emission on the lines of IPCC Guidelines (1996) is similar to the emission of this study. The emission factor of greenhouse gas ($CO_{2}$) were as follows the emission factor between $9.01E-01{\sim}2.15E-01\;ton/ton$ for $CO_{2}$. The result of this study is higher than emission factor of IPCC (0.51) but it is similar to U.S. EPA's (0.952).

A Study on Installing Air Pollution Emission Systems in Seoul Using GIS and GPS (GIS와 GPS를 이용한 서울시 대기측정시스템 설치방안에 관한 연구)

  • Lee, Bong-Gyou
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.1 s.11
    • /
    • pp.53-63
    • /
    • 1998
  • The purpose of this study is to investigate the current status of automatic measuring systems for air pollution emissions in Seoul and to suggest an improvement method using GIS and GPS. In Korea, there have been very few critical researches and managements for mobile and area sources regarding moving subjects such as automobiles. In order to control or to make a plan for reducing air pollutions, air pollution emission data based on tim and location, emission inventory systems and emission models should be implemented. Using digital maps and MS Visual Basic, we developed a visualized interface for air pollution emission data from automatic emission measurement systems in Seoul.

  • PDF

A Study on the Development of the Mercury Emission Factor from Coal-fired Power Plant (석탄 화력발전시설에서의 수은 배출계수 개발에 관한 연구)

  • Kim, Hyung-Chun;Park, Jung-Min;Jang, Kee-Won;Lee, Sang-Bo;Jung, No-El;Song, Deok-Jong;Hong, Ji-Hyung;Lee, Suk-Jo;Kim, Sang-Kyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.172-181
    • /
    • 2012
  • Mercury is one of the most hazardous air pollutants. Recently, mercury has been a concern in domestic and overseas because it has lethal toxicity, long distance transport, persistence and bioaccumulation in the environment. Stationary combustion sources such as coal-fired power plants, waste incinerators, and cement kilns are the major sources of mercury emissions. The objectives of this study were to measure the concentration for mercury from coal-fired power plants and to calculate emission factor to estimate its emission. The results showed that the mercury concentrations in the flue gas were 1.63-3.03 mg/$Sm^3$ in anthracite-fired power plants (average 2.32 mg/$Sm^3$) and 1.95-3.33 mg/$Sm^3$ in bituminous-fired power plants (average 2.6 mg/$Sm^3$). Mercury emission factor was estimated as 25.74 mg/ton for anthracite-fired power plants and 12.48 mg/ton for bituminous-fired power plants. Because actual measurements are limited in quantity, it is desirable to refine our estimates by extending the actual measurements.

A Study on the Characteristics of Solid-Fuel Combustion (고형연료의 배출특성 연구)

  • Jang, Kee-Won;Heo, Sun-Hwa;Lim, Seung-Young;Kim, Dae-Gon;Jung, Yong-Won;Kang, Dae-Il
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.351-360
    • /
    • 2017
  • In this study, we developed emission factors from solid-fuel fired combustors. In order to increase the reliability of emission factors, we conducted a joint research with the Institute of Health and Environment. As a result, PM average concentration was $8.19mg/m^3$. $SO_2$ and $NO_x$ were respectively 8.46 ppm, 50.64 ppm. Hazardous air pollutants such as Cr, Pb and Hg were detected in trace amounts continuously for 2 years in some solid-fuel fired combustors. The emission factors for the three kinds of PM, $SO_x$, $NO_x$ were developed based on the measurement data. For the PM emission factors, that of SRF was 15.93 g/kg and that of Bio-SRF was 14.18 g/kg. Compared with those of US. EPA, emission factors of this study showed the results of low values. $SO_x$ emission factors were 4.42 g/kg for SRF and 1.39 g/kg for Bio-SRF. $NO_x$ emission factors were 13.21 g/kg and 4.43 g/kg, respectively. Through the results of this study, we would support atmospheric administration policies such as the emission factor notification revision.

Estimation on the Emission Reduction of SULEV LPG Vehicles (SULEV LPG 자동차의 배출가스 저감효과 평가)

  • Park, Jun-Hong;Lee, Jong-Tae;Kim, Sun-Moon;Kim, Jeong-Soo;Kang, Dae-Il;Lim, Yun-Sung;Han, Bo-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.68-76
    • /
    • 2012
  • SULEV (Super Ultra Low Emission Vehicle) which is one of the emission standards in Fleet Average System introduced to Korea from 2009 is known as the most severe standard to achieve with internal combustion engine. Considering low sales volume of hybrid vehicles in Korea, vehicle manufacturers are required to develop SULEV technologies for conventional gasoline and LPG vehicles to meet the future Fleet Average standard. In this study, the comparison of emissions has been made between SULEV developed and ULEV LPG vehicles mainly produced in this time. To estimate the emission reduction of SULEV vehicles, CVS-75 and NIER test modes have been used. CVS-75 has been used for emission certification of gasoline and LPG vehicles. NIER modes cover various average vehicle speed and reflect Korean real driving patterns better than CVS-75. The test results show that SULEV LPG vehicles have very high potential to reduce $NO_x$ in regulated emissions, $N_2O$ in green house gases and toluene in VOCs. However, SULEV LPG vehicles don't affect much on the reduction of CO and total green house gases.

A Study on Emission Characteristics of Air Pollutants from the use of Solid Fuel (고체연료 사용에 따른 오염물질 배출특성 조사연구)

  • Kim, Jong-Hyeon;Heo, Sun-hwa;Kim, Hyung-Chun;Jo, Myeong-ran;Lim, Seungy-oung;Lee, Sang-Bo;Kang, Dae-il
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.2
    • /
    • pp.77-86
    • /
    • 2017
  • Globally, use of affordable fuels such as briquettes, woods and wood pellets has increased. Organic pollutants emitted from non-point sources using solid fuels may have contributed to air pollution in urban environment. In this study, we utilized simulated incinerator proposed by U.S. EPA and investigated concentrations of PM, $PM_{10}$, $PM_{2.5}$, OC/EC, CO, $SO_x$, $NO_x$, VOCs and PAHs emitted while cooking meat and fish using briquettes, woods and wood pellets, and developed emission factors. As a result, wood combustion produced more air pollutants than the others. Particulate matter emission factors for woods and wood pellets were 13.54 g/kg and 9.15 g/kg, respectively. Total VOCs emission factors for briquettes, woods and wood pellets were 36.12mg/kg, 46.13mg/kg and 18.26mg/kg, respectively. Additionally, total PAHs emission factors for briquette, woods and wood pellets were 0.44 mg/kg, 18.84mg/kg and 101.62mg/kg, respectively.

Effect of Payload on Fuel Consumption and Emission of Light Duty Freight Truck during Acceleration Driving (소형 화물 차량의 적재량이 가속 주행 시의 연비 및 오염물질 배출에 미치는 영향)

  • Lee, Tae-Woo;Keel, Ji-Hoon;Jeon, Sang-Jin;Park, Jun-Hong;Lee, Jong-Tae;Hong, Ji-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.133-141
    • /
    • 2011
  • The effect of payload on fuel consumption and emission of light duty freight truck during acceleration driving has been analyzed. Running tests were carried out with various payload conditions on chassis dynamometer. A typical driving pattern for urban cities was used. Real time emission measurement systems for gaseous and soot emission were utilized to investigate the real time dynamic of fuel use and exhaust emissions. It was observed that fuel use and pollutant emissions were increased as payload was increased. Under the same payload condition, the increased amount of acceleration driving is much higher than that of steady state driving. The results demonstrated the advantages of eco-driving, which is an environmentally friendly driving manner, could be emphasized in heavier payload condition. Inertial tractive power was introduced for considering the parameters affecting emission during acceleration driving, which are speed, acceleration and payload. Fuel use and emission in various driving conditions were expressed as functions of inertial tractive power. The estimated result by these functions well predicted measured result within 10 % deviation.

Review of Air Pollution and the Related Regulations in China

  • Qi, Shang
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.50-65
    • /
    • 2003
  • Air pollution is very serious in China. This paper reviews the relevant research and countermeasures in China. The followings are focused in this article: 1) three major types of air pollutions: sulphur dioxide, vehicle emission and indoor air pollution; 2) the health effect of the three types of pollution; 3) major countermeasures adopted by Chinese Government.

  • PDF