• 제목/요약/키워드: Pollutant runoff

Search Result 420, Processing Time 0.031 seconds

Monitoring of Non-point Source Pollutants Generated by a Flower Farm

  • Choi, Byoungwoo;Kang, Meea
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.463-471
    • /
    • 2014
  • This paper considers the effect of rainfall on non-point source (NPS) pollutant loads. The impact of runoff on the occurrence of NPS pollutants was found to be influenced by rainfall amount, rainfall intensity, and the number of antecedent dry days (ADD), both independently and in combination. The close correlation ($R^2$ = 0.9920) between rainfall and runoff amounts was demonstrated at the study site (a flower farm) over the period between January 2011 and December 2013. The relationships among pollutant levels, runoff, and rainfall was not satisfactory results except for the Biochemical Oxygen Demand ($BOD_5$). The correlation coefficients between $BOD_5$, and both runoff and rainfall, were greater than 0.92. However, the relationships of other pollutants, such as Suspended Solid (SS), Chemical Oxygen Demand ($COD_{Mn}$), Total Nitrogen (TN), and Total Phosphorus (TP), with runoff and rainfall had correlation coefficients of less than 0.70. The roles of rainfall was different from rainfall categories on the occurrence of runoff. Instantaneous rainfall intensity was a principle factor on the occurrence of runoff following light rainfall events (total ${\leq}30mm$). For rainfall of intermediate intensity (total precipitation 31-50 mm), the combined effect of both average rainfall intensity and ADD was found to influence runoff generation. We conclude that the control of NPS pollutants with the reflection of the climate change that makes the remarkable effect of amounts and forms on the rainfall and runoff.

A Study on the Estimation of Pollutant Runoff using GIS data and Application to the Closed Watershed (GIS 데이터를 이용한 오염 유출량의 해석과 폐쇄성 수역의 적용에 관한 연구)

  • 강상혁;김승호;권재혁;노구정인
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.263-273
    • /
    • 2002
  • This paper presents desirable water environmental management to a closed watershed. In order to obtain spatially distributed environmental information, GIS data have been used. Elevation data are used to extract stream channels automatically and to divide networks of a watershed. A Digital Elevation Model (DEM) has been developed, validated, and adopted to estimate the runoff of total nitrogen pollutant from watershed. This GIS-linked model can be applied effectively to the watersheds with many sub-streams, and for the estimation of pollutant runoff considering land use change.

  • PDF

Characteristics of Pollutant Loading in Namdae-cheon Watershed

  • Choi, Jin-Kyu;Son, Jae-Gwon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.49-56
    • /
    • 2003
  • Nonpoint source pollutant loading from watershed may cause a problem to the water quality of the reservoir and stream. The characteristics of stream flow and water quality were monitored to investigate the runoff loading of the Namdae-cheon watershed from May in 1999 to October in 2003. Stage-discharge rating curve at the stream gauging site was established, and annual stream runoff of the study watershed was estimated as 499.4∼1,330.8mm during four years. The concentrations of total-nitrogen and total-phosphorus of stream water quality ranged from 0.76 to 6.95mg/L and from 0.0010 to 0.2276 mg/L, respectively, where T-N was generally higher than the water quality standard 1.0 mg/L for agricultural water use. The loads by unit generation of pollutant mass with respect to population, livestock, land use in this watershed were calculated. The runoff pollutant loadings by concentrations of total-N and total-P were estimated during study period, where the annual runoff loading of total-P was much less than the load by pollutant mass unit generation. The relations between stream discharge and water quality were analysed, and there was a high correlation for total-N but low for total-P. These results will be used to develop the monitoring techniques and water quality management system of agricultural watershed.

Evaluation of Estimated Storm runoff and Non-point Pollutant Discharge from Upper Watershed of Daecheong Reservoir during Rainy Season using L-THIA ArcView GIS Model (L-THIA ArcView GIS 모형을 이용한 대청호 만입부 유역의 직접유출 및 비점오염배출부하 산정 적용성 평가)

  • Choi, Jaewan;Lee, Hyuk;Shin, Dong-Seok;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.984-993
    • /
    • 2009
  • There have been growing concerns of algal growth at Daecheong reservoir due to eutrophication with excess nutrient inflow. Rainfall-driven runoff and pollutant from watershed are responsible for eutrophication of the Daecheong reservoir. In this study, two subwatersheds of the Daecheong reservoir were selected and water quality characteristics were analyzed. The L-THIA ArcView GIS model was used for evaluation of direct runoff and water quality. The $R^2$ and the EI value for direct runoff were 0.95 and 0.93 at Wol-oe watershed and were 0.81, 0.71 at An-nae watershed, respectively. The $R^2$ for SS, T-P were 0.53, 0.95 at Wol-oe watershed and 0.89, 0.89 at An-nae watershed, respectively. It has been proven that the L-THIA ArcView GIS model could be used for evaluating direct runoff and pollutant load from the watershed with reasonable accuracies.

Modeling the Effects of Low Impact Development on Runoff and Pollutant Loads from an Apartment Complex

  • Jeon, Ji-Hong;Lim, Kyoung-Jae;Choi, Dong-Hyuk;Kim, Tae-Dong
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.167-172
    • /
    • 2010
  • The effects of low impact development (LID) techniques, such as green roofs and porous pavements, on the runoff and pollutant load from an apartment complex were simulated using the Site Evaluation Tool (SET). The study site was the Olympic Village, a preexisting apartment complex in Seoul, South Korea, which has a high percentage of impervious surfaces (approximately 72% of the total area). Using the SET, the effects of replacing parking lots, sidewalks and driveways (37.5% of the total area) having porous pavements and rooftops (14.5% of the total area) with green roofs were simulated. The simulation results indicated that LID techniques reduced the surface runoff, and peak flow and pollutant load, and increased the evapotranspiration and soil infiltration of precipitation. Per unit area, the green roofs were better than the porous pavements at reducing the surface runoff and pollutant loads, while the porous pavements were better than green roofs at enhancing the infiltration to soil. This study showed that LID methods can be useful for urban stormwater management and that the SET is a useful tool for evaluating the effects of LID on urban hydrology and pollutant loads from various land covers.

Simulation of generable muddy water quantity and pollutant loads in sloping field using artificial rainfall simulator (실내인공강우기를 이용한 경사지 밭의 토양유실량과 오염부하 모의)

  • Shin, Min-Hwan;Choi, Yong-Hun;Seo, Ji-Yeon;Lee, Jae-Woon;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.986-990
    • /
    • 2009
  • Using artificial rainfall simulator, the soil loss, which is deemed as most cause of muddy water problem among Non-point source(NPS) pollutant, was studied by the analysis of direct runoff flow, groundwater runoff, and groundwater storage properties concerned with rainfall intensity, slope of area, and land cover. The direct runoff showed increasing tendency in both straw covered and bared boxes which are 5%, 10%, and 20% sloped respectively. Also the direct runoff volume from straw covered surface boxes were much lower than bared surface boxes. It's deemed as that the infiltration capacity of straw covered surface boxes were increased, because the surface sealing by fine material of soil surface didn't occurred due to the straw covering. Under the same rainfall intensity and slope condition, 2.4 ${\sim}$ 8.2 times of sediment yield were occurred from bared surface boxes more than straw covered surface boxes. The volume of infiltrated were increased due to straw cover, the direct runoff flow were decreased with decreasing of tractive force in surface. To understand of relationship the rate of direct runoff flow, groundwater runoff, and groundwater storage by the rainfall intensity, slope, and land cover, the statistical test was performed. It shows good relationship between most of factors, expect between the rate of groundwater storage and rainfall intensity.

  • PDF

Development of Ridge Regression Model of Pollutant Load Using Runoff Weighted Value Based on Distributed Curve-Number (분포형 CN 기반 토지피복별 유출가중치를 이용한 오염부하량 능형회귀모형 개발)

  • Song, Chul Min;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.111-120
    • /
    • 2018
  • The purpose of this study was to develop a ridge regression (RR) model to estimate BOD and TP load using runoff weighted value. The concept of runoff weighted value, based on distributed curve-number (CN), was introduced to reflect the impact of land covers on runoff. The estimated runoff depths by distributed CN were closer to the observed values than those by area weighted mean CN. The RR is a technique used when the data suffers from multicollinearity. The RR model was developed for five flow duration intervals with the independent variables of daily runoff discharge of seven land covers and dependent variables of daily pollutant load. The RR model was applied to Heuk river watershed, a subwatershed of the Han river watershed. The variance inflation factors of the RR model decreased to the value less than 10. The RR model showed a good performance with Nash-Sutcliffe efficiency (NSE) of 0.73 and 0.87, and Pearson correlation coefficient of 0.88 and 0.93 for BOD and TP, respectively. The results suggest that the methods used in the study can be applied to estimate pollutant load of different land cover watersheds using limited data.

Analysis of pollutant build-up model applied to various urban landuse

  • Choi, Jiyeon;Na, Eunhye;Ryu, Jichul;Kim, Jinsun;Kim, Hongtae;Shin, Dongsuk
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.13-17
    • /
    • 2019
  • This study was conducted to analyse the application of pollutant build-up model on various urban landuses and to characterize pollutant build-up on urban areas as a source of stormwater runoff pollution. The monitored data from impervious surfaces in urban areas such as commercial (8 sites), industrial (10 sites), road (8 sites), residential (10 sites), recreational (5 sites) from 2008 to 2016 were used for the analysis of pollutant build-up model. Based on the results, the average runoff coefficients vary from 0.35 to 0.61. In all landuses except recreational landuse, the runoff coefficient is 0.5 or more, which is the highest in the commercial area. Commercial landuse where pollutants occur at the highest EMC in all landuse, and it is considered that NPS management is necessary compared with other landuses. The maximum build-up load for organic matter (BOD) was highest in the commercial area ($4.59g/m^2$), and for particular matter (TSS) in the road area ($5.90g/m^2$) while for nutrient (TN and TP) in the residential area ($0.40g/m^2$, $0.14g/m^2$). The rate constants ranged from 0.1 to 1.3 1/day depending on landuse and pollutant parameters, which means that pollutant accumulation occurs between 1 and 10 days during dry day. It is clear that these build-up curves can generally be classified based on landuse. Antecedent dry day (ADD) is a suitable and reasonable variable for developing pollutant build-up functions. The pollutant build-up curves for different landuse shows that these build-up curves can be generally categorized based on landuse.

Impact of Non-point Source Runoff on Water Resource Quality according to Water-Level Changes (수위 변화에 따른 비점오염의 상수원 수질 영향 분석)

  • Choi, Mi-Jin;Lee, Sang-Hyeon
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1045-1053
    • /
    • 2015
  • This study evaluated the effect of water level of water resources on water quality in Ulsan. Two reservoirs, Sayeon Dam and Hoeya Dam, were selected and water quality of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were analyzed from 2012 to 2014. And the characteristics of precipitation were also analyzed for 70 years (1945~2014) because runoff of non-point pollutant was strongly affected by precipitation. As a result, water deterioration of Sayeon Dam and Hoeya Dam were affected in accordance with lowering water level. For example, the concentrations of COD and TN was negatively correlated with the water level when the water level of Sayeon Dam was gradually decreased in 2013. The TN concentration was increased to 1.432 mg/L from 0.875 mg/L while the lowest water level of Sayeon Dam was recorded 45 m in 2014. Additionally the concentration of COD and TN was sensitively increased with 0.213 mg/L/m and 0.058 mg/L/m on account of non-point pollutant runoff. It is indicated that hereafter a control of non-point pollutant runoff is the critical factors to maintain water resources because the contribution of non-point pollutant is expected to increase due to the frequent heavy rain events. Therefore, it is necessary to map out a specific plan for non-point pollutant control based on analyses of runoff characteristics, water pollution sources and reduction plans in water pollutants and to establish a water modelling and database system as a preventive action plan.

Analysis of the Characteristics of NPS Runoff and Application of L-THIA model at Upper Daecheong Reservoir (대청호 상류 유역의 비점오염원 유출특성 분석 및 L-THIA 모형 적용성 평가)

  • Shin, Min-Hwan;Lee, Jae-An;Cheon, Se-Uk;Lee, Yeoul-Jae;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • Generation and transportation of runoff and pollutant loads within watershed generated eutrophication at Daecheong reservoir. To improve water quality at Daecheong reservoir, the best management practices should be developed and applied at upper watersheds for water quality improvement at downstream areas. In this study, two small watersheds of upper Daecheong reservoir were selected. The Long-Term Hydrologic Impact Assessment (L-THIA) model has been widely used for the estimation of the direct runoff worldwide. To apply the L-THIA ArcView GIS model was evaluated for direct runoff and water quality estimation at small watershed. And the Web-based Hydrograph Analysis Tool (WHAT) was used for direct runoff separating from total flow. As a result, the $R^2$ (Coefficient of determination) value and Nash-Sutcliffe coefficient value for direct runoff comparison at An-nae watershed were 0.81 and 0.71, respectively. And the $R^2$ value and Nash-Sutcliffe coefficient value at Wol-oe were 0.95 and 0.93. The $R^2$ value of BOD, TOC, T-N and T-P at An-nae watershed were BOD 0.94, TOC 0.81, T-N 0.94 and T-P 0.89. And the $R^2$ value of BOD, TOC, T-N and T-P at Wol-oe watershed were BOD 0.80, TOC 0.93, T-N 0.86 and T-P 0.65. The result that estimated pollutant loadings using the L-THIA ArcView GIS model reflected well the measured pollutant loadings except for T-P in Wol-oe watershed. With L-THIA ArcView GIS model, the direct runoff and non-point pollutant (NPS) loadings in the watershed could be analyzed through simple input data such as daily rainfall, land uses, and hydrologic soil group.