• Title/Summary/Keyword: Pollutant reduction

Search Result 385, Processing Time 0.044 seconds

Analysis of Pollutant load Reduction Efficiency with Riparian Buffer System Using the SWAT-REMM (SWAT-REMM을 적용한 수변림 조성에 따른 하천오염부하 저감효과 분석)

  • Choi, Youn Ho;Ryu, Ji Chul;Hwang, Ha Sun;Kum, Dong Huyk;Park, Youn Shik;Jung, Young Hun;Choi, Joong Dae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.166-180
    • /
    • 2015
  • Pollutant in watersheds comes from two major sources which are NPS (nonpoint source pollution) and PS (point source pollution). Most of the pollutant can be treated by wastewater treatment plants. However, wastewater treatment plants may not be an appropriate practice to improve water quality for the watersheds with large portion of NPS pollutant and NPS pollution from direct runoff and baseflow has different characteristics. Therefore the practices to improve water quality need to be comprehensive for pollutants by both direct runoff and baseflow. Riparian buffer, one of practices to manage pollutant in watershed, has been applied to reduce pollutant not only from direct runoff but also baseflow. In this study, the scenarios for pollutant reduction by wastewater treat plants and the nitrogen reduction by riparian buffer were simulated using SWAT-REMM to suggest an effective plan for pollutant reduction from baseflow. Riparian buffer provided nitrogen reduction of 0.2~75.0% in YbB watershed and 38.0~47.0% in GbA watershed. The result indicates that riparian buffer is effective to reduce the pollutant especially from baseflow, and it suggested as suitable for the a watershed which WWTP discharge is not capable to reduce enough pollutant.

Analysis of Efficiency of Pollution Reduction Scenarios by Flow Regime Using SWAT Model - A case study for Dalcheon Basin - (SWAT 모형을 활용한 유황별 비점오염 저감 효율 분석 - 달천 유역을 대상으로 -)

  • Kim, Soohong;Hong, Jiyeong;Park, Woonji;Kim, Jonggun;Lim, Kyoungjae
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.469-482
    • /
    • 2021
  • The recent climate change and urbanization have seen an increase in runoff and pollutant loads, and consequently significant negative water pollution. The characteristics of the pollutant loads vary among the different flow regime depending on their source and transport mechanism, However, pollutant load reduction based on flow regime perspectives has not been investigated thoroughly. Therefore, it is necessary to analyze the effects of concentration on pollutant load characteristics and reductions from each flow regime to develop efficient pollution management. As non-point pollutants continuously increase due to the increase in impervious area, efficient management is necessary. Therefore, in this study, 1) the characteristics of pollutant sources were analyzed at the Dalcheon Basin, 2) reduction of nonpoint pollution, and 3) reduction efficiency for flow regimes were analyzed. By analyzing the characteristics of the Dalcheon Basin, a reduction efficiency scenario for each pollutant source was constructed. The efficiency analysis showed 0.06% to 5.62% for the living scenario, 0.09 to 24.62% for the livestock scenario, 0.17% to 12.81% for the industry scenario, 9.45% to 38.45% for the land scenario, and 9.8% to 39.2% for the composite scenario. Therefore, various pollution reduction scenarios, taking into account the characteristics of pollutants and flow regime characteristics, can contribute to the development of efficient measurements to improve water quality at various flow regime perspectives in the Dalcheon Basin.

A Study on Removal Efficiency and Applicability of Natural Type Road Non-point Pollutant Reduction Facilities (자연형 도로 비점오염저감시설의 저감효율 및 적용성 연구)

  • Lee, Sang Hyuk;Cho, Hye Jin;Kim, Lee Hyung
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.9-17
    • /
    • 2014
  • PURPOSES : The purpose of this study is to assess removal efficiency of non-point pollutants and applicability for non-point pollutant reduction facilities by conducting the demonstration project operation. METHODS : In order to analyze removal efficiency of non-point pollutants for facilities such as a grassed swale, a small constructed wetland, a free water surface wetland, a horizontal sub-surface flow wetland, and a sand filtration, the field data including specifications of facilities, rainfall, inflow and runoff rainfall effluent etc. was acquired after occurring rainfall events, and the acquired data was analyzed for removal efficiency rate to assess road non-point pollutants facilities using event mean concentration (EMC) and summation of load (SOL) methods. RESULTS : The results of analyzing rainfall effluent, non-point pollutant sources showed that total suspended solid (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP), chrome (Cr), zinc (Zn), and lead (Pb) can be removed through non-point pollutant reduction facilities by 60.3% ~ 100%. Especially removal efficiency of TSS, COD and BOD is relatively higher than removal efficiency of other non-point pollutant sources in all kind of non-point pollutant facilities. CONCLUSIONS : Based on the result of this study, even though natural type of non-point pollutant reduction facilities for roads occupy small areas comparing with drainage basin areas, most of non-point pollutant sources would be removed through the facilities.

Numerical Prediction for Reduction of Oxygen Deficient Water Mass by Ecological Model in Jinhae Bay (생태계모텔에 의한 진해만의 빈산소수괴 저감예측)

  • Lee, In-Cheol;Kong, Hwa-Hun;Yoon, Seok-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.75-82
    • /
    • 2008
  • As a basic study for establishing a countermeasure for an oxygen deficient water mass (ODW), we investigated the variation of ODW volume according to the enforced total pollution load management in Jinhae Bay. This study estimated the inflowing pollutant loads into Jinhae Bay and predicted the reduction in ODW by using a sediment-water ecological model (SWEM). The result obtained in this study are summarized as follows: 1) The daily average pollutant loads of COD, SS, TN, TP, DIN, and DIP inflowing into Jinhae bay in 2005 were estimated to be about 12,218 kg-COD/day, 91,884 kg-SS/day, 5,292 kg-TN/day, 182 kg-TP/day, 4,236 kg-DIN/day, and 130 kg-DIP/day. 2) The calculated results of the tidal current by the hydrodynamic model showed good agreement with the observed currents. Also, an ecological model well reproduced the spatial distribution of the water quality in the bay. 3) This study defined the ODWDI (ODW decreasing index) in order to estimate the ODW decreasing volume caused by a reduction in the inflowing pollutant loads. As a result, the ODWDI was predicted to be about 0.91 (COD 30% reduction), 0.87 (COD 50% reduction), 0.79 (COD 70% reduction), 0.85 (ALL 30% reduction), 0.66 (ALL 50% reduction), and 0.45 (ALL 70% reduction). The ODW volume was decreased 1.5 $\sim$ 2.6 times with a reduction in the COD, TN, and TP inflowing pollutant loads compared to a reduction in just the COD inflowing pollutant load. Therefore, it is necessary to enforce total pollution load management, not only for COD, but also fm TN and TP.

The Impact of Bake-Out Method on the Reduction of Pollutant Concentration in New Apartments (Bake-Out에 의한 신축 아파트의 실내 오염물질농도 저감효과 평가)

  • Pang Seung-Ki;Park Byung-Yoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.335-343
    • /
    • 2006
  • Indoor air pollution has been significantly aggravated due to hazardous pollutants emitted from petrochemical finishing materials in new apartments. Pollutants emitted into indoor environment have significant effects on the health of occupants, causing undesirable symptoms related to sick building syndrome such as headache, dizziness, difficulty in concentration, etc. Therefore, this paper attempted to investigate the reduction effect of bake out on VOCs emission in new apartments. Experiments were carried out in three households, one of which was naturally ventilated. The naturally ventilated showed the lowest indoor pollutant concentration and also showed the highest reduction rate by the use of bake out. The most desirable result was observed when the household was naturally ventilated after bake out. More detailed experiments are expected to be carried out afterwards on the prediction of reduction rate of each pollutant.

A Study on the Estimation of Water Pollutants Reduction Ratio in Livestock Manure Fertilization (가축분뇨 자원화 처리시 수질오염물질 삭감율 산정 연구)

  • Oa, Seong Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.722-727
    • /
    • 2017
  • Livestock manure is known to be the main cause of non-point pollution in agricultural areas. The pollutant reduction ratio of livestock manure recycling to fertilizers was measured in order to analyze the effect on the water quality of the Total Maximum Daily Load (TMDL) system in Korea. The reduction ratio has been applied by theoretical consideration without a survey, and there is no value for Total Organic Carbon (TOC) newly introducing any organic items. The reduction ratio of each pollutant from this study was revealed as follows: TOC, BOD, T-N and T-P were 0.34, 0.60, 0.37, and 0.42 for individual farm and 0.38, 0.61, 0.45 and 0.44 for entrustment facilities, respectively. The reduction ratio of individual farm was surveyed as TOC 0.63, BOD 0.62, T-N 0.42 and T-P 0.32 for liquid fertilizer, and TOC 0.30, BOD 0.64, T-N 0.40 and T-P 0.48 for compost. The total reduction ratio was derived by multiplying the ratio for liquid fertilizer and compost by the respective load. Compared to the pollutant reduction ratio of the individual farm with entrustment facilities marking the higher in liquid fertilizer and the lower in compost. Through this study, we found the difference of pollutant reduction ratio between a livestock manure recycling process and facilities. Although phosphorus is known as a preservative matter, the treatment efficiency of T-P is analyzed to decrease by chemical precipitation.

Waste Load Allocation of Hwanggujicheon Watershed Using Optimization Technique (최적화기법을 이용한 황구지천유역의 오염부하량 할당)

  • Cho, Jae Heon;Chung, Wook Jin;Lee, Jong Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.728-737
    • /
    • 2005
  • Water quality of the Hwanggujicheon is poor because of the rapid housing and development in the large area of the basin. Establishment of water quality management strategy, based on the pollution sources survey and pollutant loads estimation, has to be established for the preservation of the stream water quality of the region. In this study, waste load allocation model to achieve the water quality goal of the stream and the optimization of pollutant load reduction, was developed. Nonpoint pollutant loads calculated by runoff model in the previous study are utilized for pollutant loads estimation of the drainage areas in this study. From the application result of the allocation model, water quality goals of the Hwanggujicheon that can be achieved as a matter of fact are BOD 8 mg/L. To achieve these goals, 23% of effluent BOD loads have to be reduced in the basin.

Water quality management of Jeiu Harbor using material cycle model(III) - Quantitative Management of Pollutant Loadings - (물질순환모델을 이용한 제주항의 수질관리(III) - 오염부하의 정량적 관리 -)

  • 조은일;강기봉
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.307-317
    • /
    • 2003
  • In this study, the material cycle model was applied to suggest alternative management of water quality for Jeju Harbor. The distribution of COD, DIN (dissolved inorganic nitrogen) and DIP (dissolved inorganic phosphorus) concentrations was reasonably reproduced by simulations on the model area of the Jeju Harbor using a material cycle model. The simulations of COD, DIN and DIP concentrations were performed under the conditions of 20∼100% pollution loadings reductions from pollution sources. In case of the 100% reduction of the input loads from Sanzi river, concentrations of COD, DM and DIP were reduced to 39%, 78% and 52%, respectively at Jeju harbor. In contrast, in case of the pollutant loadings reductions from sediment, the effect of DIN and DIP reduction relatively seemed to increase around the center of study area. The 95% reduction of the pollutant loadings from river and sediment is required to meet the COD and nutrients concentration of second grade of ocean water quality criteria.

Analysis of Reduction of NPS Pollution loads using the small sediment trap at field (소규모 침사구를 이용한 밭의 비점오염원 저감 효과 분석)

  • Shin, Min-Hwan;Lim, Kyoung-Jae;Jang, Jeong-Ryeol;Choi, Yong-Hun;Park, Woon-Ji;Won, Chul-Hee;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.27-35
    • /
    • 2012
  • Various Best Management Practices (BMPs) have been suggested to reduce Nonpoint source pollutant loads from agricultural fields. However, very little research regarding water quality improvement with sediment trap has been performed in Korea. Thus, effects of sediment trap were investigated in this study. Three sediment traps were installed at the edge of six plots and flow and water quality of inflow and outflow were monitored and analyzed. It was found that approximately 64.1 % of flow reduction was observed. In addition, pollutant concentration of outflow was reduced by 39.0 % for $BOD_5$. For SS, $COD_{Mn}$, DOC, T-N, T-P, approximately 62.1 %, 43.4 %, 43.5 %, 40.0 %, and 41.2 % reduction were observed, respectively. Over 80 % and 90 % of pollutant loads were reduced from sediment trap #2 and #3 because of less outflow from plots covered with rice straw/straw mat. In case of intensive rainfall events occurred from July 26~29, 2011, over 60 % of pollutant and 88.9 % of sediment reduction were observed from sediment trap #3. As shown in this study, small sediment traps could play important roles in reducing pollutant loads from agricultural fields. If proper management practices, such as rice straw/straw mat, are used to protect surface from rainfall impacts and rill formation, much pollutant reduction could be expected.