• Title/Summary/Keyword: Pollutant emission

Search Result 462, Processing Time 0.018 seconds

Evaluation of Air Quality in the Compost Pilot Plant with Livestock Manure by Operation Types (축분 퇴비화시스템 운용방식에 따른 실내 대기오염 평가)

  • Kim, K.Y.;Choi, H.L.;Ko, H.J.;Kim, C.N.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.283-294
    • /
    • 2004
  • Air quality in the livestock waste compost pilot plant at the Colligate Livestock Station was assessed to quantity the emissions of aerial contaminants and evaluate the degree of correlation between them for different operation strategies; with the ventilation types and agitation of compost pile, in this study. The parameters analyzed to reflect the level of air quality in the livestock waste compost pilot plant were the gaseous contaminants; ammonia, hydrogen sulfide, and odor concentration, the particulate contaminants; inhalable dust and respirable dust, and the biological contaminants; total airborne bacteria and fungi. The mean concentrations of ammonia, hydrogen sulfide, and odor concentration in the compost pilot plant without agitation were 2.45ppm, 19.96ppb, and 15.8 when it was naturally ventilated, and 7.61ppm, 31.36ppb, and 30.2 when mechanically ventilated. Those with agitation were 5.50ppm, 14.69ppb, and 46.4 when naturally ventilated, and 30.12ppm, 39.91ppb, and 205.5 when mechanically ventilated. The mean concentrations of inhalable and respirable dust in the compost pilot plant without agitation were 368.6${\mu}g$/$m^3$ and 96.0${\mu}g$/$m^3$ with natural ventilation, and 283.9${\mu}g$/$m^3$ and 119.5${\mu}g$/$m^3$ with mechanical ventilation. They were also observed with agitation to 208.7${\mu}g$/$m^3$ and 139.8${\mu}g$/$m^3$ with natural ventilation, and 209.2${\mu}g$/$m^3$ and 131.7${\mu}g$/$m^3$ with mechanical ventilation. Averaged concentrations of total airborne bacteria and fungi in the compost pilot plant without agitation were observed to 28,673cfu/$m^3$ and 22,507cfu/$m^3$ with natural ventilation, and 7,462cfu/$m^3$ and 3,228cfu/$m^3$ with mechanical ventilation. They were also observed with agitation to 19,592cfu/$m^3$ and 26,376cfu/$m^3$ with the natural ventilation, and 18,645cfu/$m^3$ and 24,581cfu/$m^3$ with the mechanical ventilation. It showed that the emission rates of gaseous pollutants, such as ammonia, hydrogen sulfide, and odor concentration, in the compost pilot plant operated with the mechanical ventilation and with the agitation of compost pile were higher than those with the natural ventilation and without the agitation. While the concentrations of inhalable dust and total airborne bacteria in the compost pilot plant with the natural ventilation and with the agitation, the concentrations of respirable dust and total airborne fungi in the compost pilot plant with the mechanical ventilation and agitation were higher than those with the natural ventilation and without the agitation of compost pile. It was statistically proved that indoor temperature and relative humidity affected the release of particulates and biological pollutants, and ammonia and hydrogen sulfide were believed primary malodorous compounds emitted from the compost pilot plant.

A Study on the Evaluation of Fertilizer Loss in the Drainage(Waste) Water of Hydroponic Cultivation, Korea (수경재배 유출 배액(폐양액)의 비료 손실량 평가 연구)

  • Jinkwan Son;Sungwook Yun;Jinkyung Kwon;Jihoon Shin;Donghyeon Kang;Minjung Park;Ryugap Lim
    • Journal of Wetlands Research
    • /
    • v.25 no.1
    • /
    • pp.35-47
    • /
    • 2023
  • Korean facility horticulture and hydroponic cultivation methods increase, requiring the management of waste water generated. In this study, the amount of fertilizer contained in the discharged waste liquid was determined. By evaluating this as a price, it was suggested to reduce water treatment costs and recycle fertilizer components. It was evaluated based on the results of major water quality analysis of waste liquid by crop, such as tomatoes, paprika, cucumbers, and strawberries, and in the case of P component, it was analyzed by converting it to the amount of phosphoric acid (P2O5). The amount of nitrogen (N) can be calculated by discharging 1,145.90kg·ha-1 of tomatoes, 920.43kg·ha-1 of paprika, 804.16kg·ha-1 of cucumbers, 405.83kg·ha-1 of strawberries, and the fertilizer content of P2O5 is 830.65kg·ha-1 of paprika, 622.32kg·ha-1 of tomatoes, 477.67kg·ha-1 of cucumbers. In addition, trace elements such as potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), and manganese (Mn) were also analyzed to be emitted. The price per kg of each item calculated by averaging the price of fertilizer sold on the market can be evaluated as KRW, N 860.7, P 2,378.2, K 2,121.7, Ca 981.2, Mg 1,036.3, Fe 126,076.9, Mn 62,322.1, Zn 15,825.0, Cu 31,362.0, B 4,238.0, Mo 149,041.7. The annual fertilizer loss amount for each crop was calculated by comprehensively considering the price per kg calculated based on the market price of fertilizer, the concentration of waste by crop analyzed earlier, and the average annual emission of hydroponic cultivation. As a result of the analysis, the average of the four hydroponic crops was 5,475,361.1 won in fertilizer ingredients, with tomatoes valued at 6,995,622.3 won, paprika valued at 7,384,923.8 won, cucumbers valued at 5,091,607.9 won, and strawberries valued at 2,429,290.6 won. It was expected that if hydroponic drainage is managed through self-treatment or threshing before discharge rather than by leaking it into a river and treating it as a pollutant, it can be a valuable reusable fertilizer ingredient along with reducing water treatment costs.