• Title/Summary/Keyword: Pollutant Loads

Search Result 361, Processing Time 0.025 seconds

Characteristics of Pollutant Load from a Dam Reservoir Watershed - Case study on Seomjinkang Dam Reservoir - (댐저수지 유역의 오염부하 유출특성 - 섬진강댐 저수지를 중심으로 -)

  • Lee, Yo-Sang;Gang, Byeong-Su
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.757-764
    • /
    • 2000
  • The investigation of water quality was performed at the upstream of Seomjinkang dam reservoir for the examination of pollutant load characteristics of the reservoir watershed during flood and normal flow periods. The highest water quality concentration was occurred at Y ongsan during normal flow period where it has been more polluted by population and livestock than other sites. Pollutant load varied depending on the sampling site, rainfall intensity and antecedent precipitation during the rainy period. Based on the water quality data measured from 1998 to 1999, the average concentration during rainy period was much higher than that of non~rainy period: BOD was 1.2~1.4 times, COD 1.2~1.7 times, SS 2.6~5.4 times, T-N 2.3~3.0 times, and T-P 2.4~7.5 times respectively. When the pollutant load measured during 7 different rainy periods in 1999 was compared with total pollutant load in 1999, the BOD and COD load measured during the 7 different rainy periods were 28% that is about 1.6 times as high as those of 1999. On the other hand, the rainfall amount measured during the 7 different rainy periods was about 17.5% of total rainfall amount in 1999. The total pollutant load of TN and TP measured during the 7 different rainy periods was almost 50% of total TN and TP loads in 1999. In case of SS, it was 72.8%. It was concluded that the inflow of pollutants into the lake during the rainy period held a high portion of total inflow in 1999. It was suggested that long~term water quality monitoring be performed to better quantity pollutant load to the lake especially during rainy periods.eriods.

  • PDF

Dredging Bottom Sediments of Seoha Weir at the Downstream of Kyongan Stream can be Used as a Feasible Pollutant Load Reduction Option in the Total Pollutant Load Management System of Kwangju City? (경안천 서하보 수저퇴적물 준설이 경기도 광주시 수질오염총량관리에 있어 추가적인 부하량 삭감수단으로써 타당한가?)

  • Yu, Seung-Hoon;Lee, Bum-Yeon;Lee, Kang-Hyun;Park, Shin Jung;Lee, Chang-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.19-29
    • /
    • 2011
  • In order to assess the influences of bottom sediment on water quality, following measurement were made. (1) Estimations of pollutant loads from the bottom sediment based on mass balance concept, (2) measurements of pollutant concentrations in the sediment to assess the pollution level and influence potential, (3) in situ and laboratory measurements of Sediment Oxygen Demants (SOD) and pollutant load (sediment release) from bottom sediment. Analyses of inflow and outflow loadings using simple mass balance show that there are some variations found according to the pollutants. However, there is no consistent evidence that the sediment can be a source of pollutants. Pollutant concentrations in the sediment range 16~724.8 mg/kg (COD), 1.68 ~12.64 mg/kg (T-P), 5.6~76.8 mg/kg (T-N), 0.32~21.6 mg/kg ($NH_3$-N), 0.092~0.544 mg/kg ($NO_2$-N), 4.8~18.4 mg/kg ($NO_3$-N), and 1.59~11.23 mg/kg ($PO_4$-P). Measured SOD ranges $0.190{\sim}0.802g{\cdot}m^{-2}{\cdot}d^{-1}$ and measured release rate ranges $-1618.42{\sim}10mg/m^2{\cdot}d$(COD), $-12{\sim}16mg/m^2{\cdot}d$(T-P), $-197.37{\sim}140mg/m^2{\cdot}d$(T-N), $0.4{\sim}74.32mg/m^2{\cdot}d$($NH_3$-N), $-2.04{\sim}0.8mg/m^2{\cdot}d$ ($NO_2$-N), $-70{\sim}40mg/m^2{\cdot}d$ ($NO_3$-N), and $-26.11{\sim}28.55mg/m^2{\cdot}d$($PO_4$-P). All study results indicate that bottom sediments in the Seoha weir show only limited effects on the water quality. It implies that sediment dredging is not an effective option or management measure to reduce pollutant loading.

Loading Characteristics of Non-Point Source Pollutants by Rainfall - Case Study with Cherry Tree Plot - (강우시 비점오염원의 오염부하 특성 - 벚나무 재배지를 대상으로 -)

  • Kang, Mee-A;Choi, Byoung-Woo;Yu, Jae-Jeong
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.401-407
    • /
    • 2010
  • This study was carried out to produce the characteristics of pollutant loads caused by a cherry tree plot as a nonpoint sources(NPS) unit in agricultural areas. The relationship between rainfall and runoff didn't show a good coefficient with 0.5. Despite precipitation amount was less than 20 mm, runoff occurred with $0.5\;m^3$ because of high rainfall intensity of 8.8 mm/hr. In contrast, runoff was not occurred when precipitation amount was 47.4 mm in one case. In that case the primal effect on runoff was not precipitation amount. Correlation between load of pollutants such as BOD, COD, TN and TP and runoff' volumes showed significantly positive values which were more than r = 0.92 for all pollutants except SS(r = 0.71). SS could be a proper factor for estimating pollutant loads of BOD, COD, TN and TP because of a high correlation more than r = 0.73 between SS load and pollutant loads of BOD, COD, TN and TP. Both Organics and nutrient pollutants could be reduced if we control SS in runoff. The highest concentration of TN was detected in the event which was affected by fertilization activities directly. Therefore fertilization must be considered as a function of impact parameters on TN load in agricultural areas.

Improvement Measures of Pollutants Unit-Loads Estimation for Paddy Fields (논으로부터 배출되는 영양물질 오염부하량 원단위 산정 방법 개선 방안 검토)

  • Jung, Jae-Woon;Yoon, Kwang-Sik;Choi, Woo-Jung;Choi, Woo-Young;Joo, Seuk-Hun;Lim, Sang-Sun;Kwak, Jin-Hyeob;Lee, Soo-Hyung;Kim, Dong-Ho;Chang, Nam-Ik
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.291-296
    • /
    • 2008
  • Pollutant unit load developed by Ministry of Environment (MOE) in 1995 has been a tool commonly used for water quality management and environmental policy decision. In spite of the convenience of the method in application, the shortcoming of the method has been criticized especially for nonpoint source pollution from paddy field. In this paper the estimation procedures of pollutant unit load from paddy field in the major river basins (Han, Nakdong, Geum, and Youngsan river) were investigated, and some suggestions of improvement measures of the unit-load estimation were made. The investigation showed that the distributions of rainfall, run-off, and run-off ratio, which are the most important factors affecting discharge amount of pollutants, were not similar among river basins. Such differences seemed to result in a greater unit loads estimation at Han river and at Nakdong river watersheds compared to the others. Therefore, it is not likely to be rationale to compare unit load among the watersheds without consideration of such differences. We conclude that estimation of unit-load through an intensive monitoring of pollutant discharge is crucial for better estimation of unit-load. When such an intensive monitoring is not easy due to labor and expense restriction, we suggest that unit-load should be estimated based on the storm-events which is a representative rainfall-runoff event of the area.

A Study of GIS-based Estimation of Pollutant Loads in Accordance with Spatial Landuse Variation - Focussing on Wangsook Watershed - (토지이용의 공간적 다양성에 따른 GIS 기반 오염부하 산정에 관한 연구 - 왕숙천 유역을 중심으로 -)

  • Kim, Kyoung-Soon;Kim, Kye-Hyun;Kwon, Oh-Jun
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.5
    • /
    • pp.305-315
    • /
    • 2005
  • The scheme to classify pollution sources in Korean TMDL planning has been pointed out too much complex to implement practically because of requiring a wide range of items to be collected from a field. Within a deficient situation to collect field data, the mathematical scheme that focuses only on counting an uniform area ratio of the different land uses to estimate of pollutant loads from individual sub-catchments has been used without taking into account of the spatial characteristics of major land uses as well as the locations of pollution sources in each sub-catchment. It would cause to significant level of errors to estimate the pollution loads. Therefore, this study proposes a renovated scheme that can be adopted more easily to classify pollution sources in the watershed and reduce the estimation errors in the spatial distribution of pollution sources by introducing a spatial analysis based on digital land cover maps. In order to estimate a unit area to calculate the uniform pollution load, the pollution response unit area that is locating spatially at the same place and having same land use is identified through the application of GIS overlay technique. Unlikely existing conventional method to calculate the pollution load based on equal distribution of pollutants for each administrative boundary, it is assumed that the pollution load from household and livestock sources are generated and washed off from only residential areas. While, pollution from business population comes from commercial area and industrial load from wastewater discharge facilities are from industrial areas. From comparison of the calculated results from the existing the method and the proposed one, it is found that although the estimation of pollution load from sub-catchment in the case of the existing conventional method application results in negligible difference in total pollution amounts from the whole area of Wangsook watershed as a study area, significant difference of pollution load among sub-catchment in which pollution response unit areas are diverse, however, appears in the case of the application of the renovated scheme.

Calibration and Validation of HSPF Mode1 to Estimate the Pollutant Loads from Rural Small Watershed (농촌소유역의 오염부하 추정을 위한 HSPF 모형의 보정과 검정)

  • Kim, Sang-Min;Park, Seung-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.8
    • /
    • pp.643-651
    • /
    • 2004
  • In this paper, the Hydrologic Simulation Program-Fortran (HSPF) was validated to estimate the pollutant loads from rural small watershed. The study watershed was the HP#6 subwatershed in Balhan reservoir watershed, located southwest from Suwon. The drainage area of HP#6 study watershed was 3.85$\textrm{km}^2$. Parameters of the HSPF model related to hydrology and water quality were calibrated from 1996 to 1997, and validated from 1999 to 2000 using observed hydrologic and water quality data. The average simulated runoff ratio for the calibration period was 0.579 and the measured runoff ratio was 0.583. The root mean square error (RMSE) for runoff during the calibration period was 2.1mm and correlation coefficient ($R^2$) was 0.92. Regarding the total nitrogen simulation, the RMSE was 0.086kg/ha/day and $R^2$ was 0.81 for the calibration period. In the case of total phosphorus, the RMSE was 0.012kg/ha/day and $R^2$ was 0.70 for the calibration period.

Washoff Characteristics of Non-point Source pollutants and Estimation of Unit Loads in Suburban Industrial Complex Areas Runoff (교외 산업단지지역 강우유출수내 비점오염물질의 유출특성 및 원단위 산정)

  • Kim, Sung-Joon;Shin, Seon-Mi;Jeon, Yong-Tae;Won, Chan-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.2
    • /
    • pp.315-325
    • /
    • 2012
  • The characteristics of stormwater runoff and estimation of unit loads were examined in suburban industrial complex areas. During rainfall event, the peak concentrations occurred within the first 100 minutes after rainfall and then the highest concentration of NPS pollutants sharply decreased, showing strong first flush effect in suburban industrial complex. The cumulative load curves for NPS pollutants showed above the straight line, indicating that first flush effect occurred in suburban industrial complex. While the mean TSS, BOD, COD, TN and TP EMCs values were shown the highest values as 120.6 mg/L, 20.8 mg/L, 44.0 mg/L, 5.58 mg/L and 1.46 mg/L respectively. Unit loads estimated from the EMCs were TSS $43.86kg/km^2/day$, COD $52.45kg/km^2/day$, BOD $24.79kg/km^2/day$, T-N $6.65kg/km^2/day$, T-P $1.75kg/km^2/day$, and Pb $0.10kg/km^2/day$. Results of unit loads were compared with the unit pollutant loads from land-use in Korea and USA. The unit load of TSS was lower than that of USA. Estimated BOD and T-N and T-P unit loads were lower than that of Korea.

Effectiveness of Settling Treatment System to Reduce Urban Nonpoint Source Pollutant Load by First Flush (초기 강우에 의한 도시 유역 비점오염 부하의 유입 저감을 위한 침강 처리 시설 적용 타당성 분석)

  • Kim, Jaeyoung;Seo, Dongil;Lee, Tongeun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.3
    • /
    • pp.140-148
    • /
    • 2017
  • The effectiveness of the first flush treatment system using settling process was evaluated to reduce urban nonpoint source pollutant loads to surface water during storm events. A pilot scale system was constructed and tested in the field and surface runoff samples were collected automatically according to pre-defined conditions. Nine rainfall events were tested and average removal efficiencies of TSS (Total Suspended Solid), TP (Total Phosphorus) and TN (Total Nitrogen) were evaluated as 87.4%, 75.3%, and 43.6%, respectively. Concentration and removal efficiency of pollutants were found to be affected by an amount of rainfall and rainfall intensities of the respective events. This seemed to be caused by the greater particulate fractions of first flushed samples than the samples collected in later time periods during the same rainfall events. The study showed that it is possible to remove a significant portion of the nonpoint source pollutant loads in initial rainfall runoff by using a simple settling process for TSS and TP without requiring additional power or chemicals.

Loading Characteristics of Non-Point Source Pollutants by Rainfall - Case Study with Sweet Potato Plot - (강우시 비점오염원의 오염부하 특성 - 고구마 재배지를 대상으로 -)

  • Kang, Mee-A;Jo, Soo-Hyun;Choi, Byoung-Woo;Yoon, Young-Sam;Lee, Jae-Kwan
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.365-371
    • /
    • 2009
  • This paper address the characteristics of loading pollutants caused by the unit agricultural area to establish an efficient management method in NPS (non-point source). The relationship between rainfall and runoff shows good coefficient with 0.92, when the event which shows relatively long antecedent dry days is excepted. The impact of runoff volume on the runoff coefficient can be described by the rainfall intensity strongly. The pollutant EMCs (event mean concentrations) in runoff increased by the increase of antecedent dry days due to dry soil conditions. As the similar pattern of pollutant's loads such as TSS, BOD, COD, TN and TP, it is cleared that other pollutants can be removed when TSS is removed. Therefore the system using only runoff coefficients is not sufficient for the prediction of pollutant loads. It is necessary to consider soil conditions such as rainfall, antecedent dry day, antecedent rainfall etc. for the prediction system.

Characteristics of Pollutant Loading from Paddy Field Area with Groundwater Irrigation (지하수 관개지역 논에서의 배출부하 특성)

  • 윤춘경;김병희;전지홍;황하선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.116-126
    • /
    • 2002
  • Discharge pattern and water quality were investigated in the drainage water from about 10 ha of groundwater-irrigated paddy field in the growing season of 2001. Total discharge quantity was about 1,117.2 mm in which about 75% was caused by management drainage due to cultural practice of paddy rice farming and the rest by rainfall runoff where total rainfall was about 515 mm. Dry-day sampling data showed wide variations in constituent concentrations with average of 26.14 mg/L, 0.37 mg/L, 3.54 mg/L at the inlet, and 43.60 mg/L, 0.34 mg/L, 3.58 mg/L at the outlet for CO $D_{cr}$ , T-P, and T-N, respectively. Wet-day sampling data demonstrated that generally CO $D_{cr}$ followed the discharge pattern and T-P was in opposite to the discharge pattern, but T-N did not show apparent pattern to the discharge. Discharge and load are in strong relationship. And based on regression equation, pollutant loads from groundwater irrigation area are estimated to be 288.34, 1.17, and 5.45 kg/ha for CO $D_{cr}$ , T-P, and T-N, respectively, which was relatively lower than the literature value from surface water irrigation area which implies that groundwater irrigation area might use less irrigation water and result in less drainage water, Therefore, total pollutant load from paddies irrigation with groundwater could be significantly lower than that with surface water. This study shows that agricultural drainage water management needs a good care of drainage outlet as well as rainfall runoff. This study was based on limited monitoring data of one year, and further monitoring and successive analysis are recommended for more generalized conclusion.