• Title/Summary/Keyword: Pollutant Load Estimation

Search Result 98, Processing Time 0.039 seconds

Enhancement of Land Load Estimation Method in TMDLs for Considering of Climate Change Scenarios (기후변화를 고려하기 위한 오염총량관리제 토지계 오염부하량 산정 방식 개선)

  • Ryu, Jichul;Park, Yoon Sik;Han, Mideok;Ahn, Ki Hong;Kum, Donghyuk;Lim, Kyoung Jae;Park, Bae Kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.212-219
    • /
    • 2014
  • In this study, a land pollutant load calculation method in TMDLs was improved to consider climate change scenarios. In order to evaluate the new method, future change in rainfall patterns was predicted by using SRES A1B climate change scenarios and then post-processing methods such as change factor (CF) and quantile mapping (QM) were applied to correct the bias between the predicted and the observed rainfall patterns. Also, future land pollutant loads were estimated by using both the bias corrected rainfall patterns and the enhanced method. For the results of bias correction, both methods (CF and QM) predicted the temporal trend of the past rainfall patterns and QM method showed future daily average precipitation in the range of 1.1~7.5 mm and CF showed it in the range of 1.3~6.8 mm from 2014 to 2100. Also, in the result of the estimation of future land pollutant loads using the enhanced method (2020, 2040, 2100), TN loads were in the range of 4316.6~6138.6 kg/day and TP loads were in the range of 457.0~716.5 kg/day. However, each result of TN and TP loads in 2020, 2040, 2100 was the same with the original method. The enhanced method in this study will be useful to predict land pollutant loads under the influence of climate change because it can reflect future change in rainfall patterns. Also, it is expected that the results of this study are used as a base data of TMDLs in case of applying for climate change scenarios.

Limitation Analysis on Estimation of SS Pollutant Load using Korean Ministry of Environment's 8-Day Interval Flow and Water Quality data (환경부 8일 유량‧수질 자료를 이용한 SS오염부하량 산정의 한계점 분석)

  • Kim, Taegoo;Yoo, Jongwon;Cho, Hyung-ik;Han, Jeongho;Lee, Dong Jun;Jung, Younghun;Yang, Jae E;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.149-162
    • /
    • 2016
  • In recent years, there has been demand for precise estimations of pollutant loads on nationwide scale for the development of appropriate site specific (watershed specific) policies to reduce the negative impact of pollutant loads. River flow data and water quality data that were previously collected by various research institutes and universities for specific research purposes for a limited period was utilized in this study. However, only TMDL 8-day interval flow and water quality data were available in national scale. Three watersheds were selected and pollutant loads were calculated by two methods i.e., Numeric Integration (NI) method and Soil and Water Assessment Tool (SWAT). Subsequently, the results were compared to determine the appropriate method for monitoring nonpoint source networks nationwide. The SWAT model was calibrated and its estimated daily flow data were used in the NI method with estimated sediment data for 8-day monitoring data for three watersheds. The results indicated that the quantity of pollutant loads estimated with the NI and SWAT are different to some degrees especially during the summer season for all the three study watersheds. Thus, more frequent sampling of water quality is needed for nonpoint source pollutant estimation.

Estimation of Pollution Using Load Duration Curves at Streams in Sapgyo Watershed (부하지속곡선을 이용한 삽교호수계 지류하천의 오염원인 분석)

  • Cho, Jeongho;Kim, Hongsu;Cho, Byunguk;Park, Sanghyun;Lee, Mukyu;Lee, byeonggu
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.175-189
    • /
    • 2021
  • In this study, 48 streams in the Sapgyo Watershed were selected, and the Load Duration Curves (LDC) were drawn up for each stream using water quality and flow monitoring over the last three years (2018-2020), and it was evaluated whether the target water quality was achieved for each flow section. As a result of evaluating whether or not the target water quality exceeded according to the LDC, it was found that 22 rivers exceeded the target water quality. Five rivers exceeded the target water quality due to point pollutant sources, 13 rivers exceeded the target water quality due to non-point pollutant sources, and 4 rivers exceeded the target water quality due to both point and non-point pollutant sources. Among the rivers that exceeded the target water quality due to point pollutant sources, which included domestic sewage of the untreated population, there is a need to reduce the influx of polluted loads by the untreated population. The use of eco-friendly fertilizers is recommended for rivers with a relatively high farmland ratio among rivers exceeding the target water quality due to non-point pollutant sources, and installation of boiling point reduction facilities that can reduce the amount of polluted load introduced during rainfall or manage water shores. In rivers with a large number of livestock breeding heads, the livestock houses located in these rivers need to be preferentially transferred to livestock manure treatment plants. Due to the high ratio of land area because of urbanization, initial rainwater treatment facilities are required to reduce the amount of pollutant load flowing into the river through the impermeable layer during rainfall.

Prediction of the Pollutant Loading into Estuary Lake according to Non-cultivation and Cultivation conditions of Reclaimed Tidal Land (담수호 유입 오염부하량의 간척농지 영농 전.후 변화 예측)

  • Yoon, Kwang-Sik;Choi, Soo-Myung;Yang, Hong-Mo;Han, Kuk-Heon;Han, Kyung-Soo
    • Journal of Korean Society of Rural Planning
    • /
    • v.7 no.1 s.13
    • /
    • pp.27-36
    • /
    • 2001
  • Estimation of current and future loading from watershed is necessary for the sound management of water quality of an estuary lake. Pollution sources of point and non-point source pollution were surveyed and Identified for the Koheung watershed. Unit factor method was used to estimate potential pollutant load from the watershed of current conditions. Flow rate and water qualify of base flow and storm-runoff were monitored in the main streams of the watershed. Estimation of runoff pollutant loading from the watershed into the lake in current conditions was conducted by GWLF model after calibration using observed data. Prospective pollutant loading from the reclaimed paddy fields under cultivation conditions was estimated using the modified CREAMS model. As a result, changes of pollutant loading into estuary lake according to non-cultivation and cultivation conditions of reclaimed tidal land were estimated.

  • PDF

A Study on the Characteristics of Pollutant Loads in Kamak Bay Watershed (駕莫灣 流域의 汚染負荷 特性에 관한 硏究)

  • 이대인;조현서
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.945-954
    • /
    • 2002
  • The objective okgf this study is understanding and evaluation of temporal and spatial variation of pollutant loads by input sources for water quality management in Kamak Bay. Flow rate of rivers and ditches ranges from about $2,592-63,072m^3/d$ in October to $864-55,296m^3/d$ in January. In particular, the R2 predominated flow rate among input sources. Total COD, BOD, DIN and DIP loadings in January were about 896kg/d, 718kg/d, 2,152kg/d, and 154kg/d, respectively, which exceeded those of October. Lower POC/TOC levels are estimated in R2, and also in October. Temporal variation of pollutant loads were closely related to the human activity. Total discharging loadings of BOD, TN and TP by unit loading estimation were 4,993.0kg/d, 2,558.7kg/d, and 289.2kg/d, respectively, and were mainly affected by the population. Runoff ratio of BOD was about 0.14 in January Mean $NH_4^+_-N$ and $PO_4\;^{3-}-P$ loadings from sediment were 16.23mg/$m^2$/d and 7.26mg/$m^2$/d, respectively. For the improvement of water quality in this area, not only pollutant loads of rivers and ditches but also benthic flux from sediment should be reduced within the limits of the environmental capacity.

Evaluation of Applicability of the ESTIMATOR Model for the Analysis of Nutrient Load Characteristics

  • Shin, Yong-Chul;Heo, Sung-Gu;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.7
    • /
    • pp.67-75
    • /
    • 2005
  • It has been well-known that the Nonpoint Source (NPS) pollutions are the primary contributors to water quality degradation in the receiving water bodies as well as the Point Source (PS) pollutions. To develop an effective management practice for water quality improvement, pollutant loads must be first estimated. In many studies, the Numeric Integration (NI) method has been used because of its ease of application, irrespective of the total number of samples collected for each storm event. Thus, there have been needs for more accurate pollutant load estimation with a limited number of water quality samples. In this study, NI method and regression method using the USGS ESTIMATOR model were comparatively used to calculate the pollutant loads for the Wolgokri watershed, Gangwon Province. The $NO_{3}$-N, T-N, and T-P loads using NI method and ESTIMATOR model were 13.85 kg/ha, 45.92 kg/ha, and 1.887 kg/ha, and 11.93 kg/ha,43.20 kg/ha, and 1.650 kg/ha, respectively. The estimated loads using ESTIMATOR model were lower than those using NI method by $86\%$, $94\%$, and $87\%$. These discrepancies in the estimated loads using a different load estimation method could be explained in that the total number of samples were not sufficient enough for NI method. Thus, ESTIMATOR model is recommended for the frequently stream discharge and less frequently measured water quality data.

Database and User Interface for Pollutant Source and Load Management of Yeungsan Estuarine Lake Watershed Using GIS (GIS를 활용한 영산호 수계 오염원 데이터베이스 구축과 오염원관리 사용자 인터페이스)

  • 양홍모
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.6
    • /
    • pp.114-126
    • /
    • 2001
  • The purpose of this study is to establish the databases of pollutant sources and water quality measurement data by utilizing GIS, and making the user interface for the management of pollutant sources. Yeongsan Estuarine Lake was formed of a huge levee of 4.35 km constructed by an agricultural reclamation project. Water quality of the reservoir has been degraded gradually, which mainly attributes to increase of point and non-point source pollutant loads from the lake's watershed of 33,374.3 $\textrm{km}^2$ into it. Application of GIS to establishment of the database was researched of pint source such as domestic sewage, industrial wastewater, farm wastes, and fishery wastes, and non-pont source such as residence, rice and upland field, and forest runoffs of the watershed of the lake. NT Acr/Info and ArcView were mainly utilized for the database formation. Land use of the watershed using LANDSAT image data was analyzed for non-point source pollutant load estimation. Pollutant loads from the watershed into the reservoir were calculated using the GIS database and BOD, TN, TP load units of point and non-point sources. Total BOD, TN, TP loads into it reached approximately to 141, 715, 2,094 and 4,743 kg/day respectively. The loads can be used as input parameters for water quality predicting model of it. A user-friendly interface program was developed using Dialog Designer and Avenue Script of AcrView, which can perform spatial analysis of point and non-point sources, calculate pollutant inputs from the sources, update attribute data of them, delete and add point sources, identify locations and volumes of water treatment facilities, and examine water quality data of water sampling points.

  • PDF

Characteristics of Pollutant Loads and Water Quality in Kwangyang Bay, Korea

  • Lee Dae-In;Park Chung-Kil;Cho Hyeon-Seo
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.3
    • /
    • pp.149-154
    • /
    • 2003
  • The characteristics of pollutant loads from the various sources and seawater quality in Kwangyang Bay were evaluated. Total flow rate was estimated to be $10,868,066.8 m^3/day$ with a flow rate of R2l (the Seomjin River) as the highest one. Total COD, TN and TP loads of the input rivers and the ditches were about 27,591.8, 25,029.6 and 586.4 kg/day, respectively. Wastewater discharging loads was the greatest contributors to pollutant loads in the inner part of Kwangyang Bay. COD values in the inner part of the bay was over 3.0 mg/L, which exceeded the seawater quality criteria III of Korea. The average values of DIN and DIP were 8.62 ${\mu}gN/L\;and\;1.26\;{\mu}gP/L$, respectively. The limiting factor for algal growth was DIN. In he total discharging loads of the watershed from unit loading estimations, BOD, TN and TP were 9,132.3, 2,727.2 and 304.2 kg/day, respectively. In addition, municipal sewage by the population as pollution sources and the city of Kwangyang as administrative district had the highest loads. For a appropriate water quality recovery of Kwangyang Bay, it is suggested that it is essential to estimate reduction rate of total pollutant loads by water quality modeling.

Evaluation of Flow-Pollutant Load Delivery Ratio Equations on Main Subwatersheds within Juam Lake (농촌유역 유량-유달율 단순회귀식을 이용한 주암호 상류유역의 유달율 추정가능성 평가)

  • Jung, Jae-Woon;Lim, Byung-Jin;Choi, Dong-Ho;Choi, Yu-Jin;Lee, Kyoung-Sook;Kim, Young-Joo;Kim, Kap-Soon;Chang, Nam-Ik;Yoon, Kwang-Sik
    • Journal of Environmental Science International
    • /
    • v.21 no.10
    • /
    • pp.1235-1244
    • /
    • 2012
  • The objective of this study is to evaluate Flow-Pollutant load delivery ratio equations developed from rural watershed on main subwatersheds within Juam Lake. Two regression equations for BOD and three equations for T-P were evaluated on Bosung cheon, Dongbok cheon, Songgwang cheon, Naenam cheon, and Sinpyeon cheon. The results show that estimation of BOD delivery ratio using flow-delivery equation is reliable when relative composition of discharge load of pollutant sources of a watershed is similar to those of watershed where the equation developed. On the other hand, application of regression equation for T-P was feasible when the landuse pattern and relative composition of discharge load of pollutant sources of a watershed is similar to those of watershed where the equation developed.

Application of the High Resolution Aerial Images to Estimate Nonpoint Pollution Loads in the Unit Load Approach (원단위법에 의한 비점오염부하량 산정 시 토지피복 특성을 반영하는 고해상도 항공영상의 활용방안)

  • Lee, Bum-Yeon;Lee, Chang-Hee;Lee, Su-Woong;Ha, Do
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.5
    • /
    • pp.281-291
    • /
    • 2009
  • In Total Water Pollutant Load Management System of Korea, unit load approach based on land register data is currently used for the estimation of non-point pollutant load. However, a problem raised that land register data could not always reflect the actual land surface coverages which determine runoff characteristics of non-point pollution sources. As a way to overcome this, we tried to establish quantitative relationships between the aerial images (0.4m resolution) which reflect actual land surface coverages and the land registration maps according to the 19 major designated land-use categories in Kyeongan watershed. Analyses showed different relationships according to the land-use categories. Only a few land-use categories including forestry, road and river showed essentially identical and some categories such as orchard, parking lot and sport utility site showed no relationships at all between image data and land register data. Except for the two cases, all the other categories showed statistically significant linear relationships between image data and land register data. The analyses indicate that using high resolution aerial maps is a better way to estimate non-point pollutant load. If the aerial maps are not available, application of the linear relationships as conversion factors of land register data to image data could be an possible option to estimate non-point pollutant loads for the specific land-use categories in Kyeongan watershed.