• Title/Summary/Keyword: Pole checking

Search Result 6, Processing Time 0.02 seconds

Kinematic Comparative Analysis of Short Turns between Skilled and Unskilled Alpine Skiers

  • Jo, Hyun Dai
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.4
    • /
    • pp.219-226
    • /
    • 2019
  • Objective: The purpose of this study is to provide a better understanding of short turn mechanism by describing short turns after kinematic analysis and provide skiers and winter sports instructors with data through which they are able to analyze right postures for turns in skiing in a systematic, rational and scientific manner. Method: For this, a mean difference of kinematic variables (ski-hip angle, ski-shoulder twist angle, pole checking angle, the center of gravity (CG) displacement, trunk forward lean angle) was verified against a total of 12 skiers (skilled and unskilled, 6 persons each), regarding motions from the up-start to down-end points for short turns. Results: There was no difference in a ski-hip twist angle. The ski-shoulder twist angle was large at the up-start point while a pole-checking angle was high at the down-end point in skilled skiers. Concerning the horizontal displacement of CG, skilled skiers were positioned on the right side at the upstart point. No significant difference was observed in the trunk forward lean angle. Conclusion: According to the ski-shoulder twist angle and CG horizontal displacement results, the upper body should be kept leant toward the pole. In addition, big turns should be made via edging and angulation. During pole checking, the hand holding the pole should be thrown and released toward a vector direction of the forearm.

Construction Algorithm of Grassmann Space Parameters in Linear Output Feedback Systems

  • Kim Su-Woon
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.430-443
    • /
    • 2005
  • A general construction algorithm of the Grassmann space parameters in linear systems - so-called, the Plucker matrix, 'L' in m-input, p-output, n-th order static output feedback systems and the Plucker matrix, $'L^{aug}'$ in augmented (m+d)-input, (p+d)-output, (n+d)-th order static output feedback systems - is presented for numerical checking of necessary conditions of complete static and complete minimum d-th order dynamic output feedback pole-assignments, respectively, and also for discernment of deterministic computation condition of their pole-assignable real solutions. Through the construction of L, it is shown that certain generically pole-assignable strictly proper mp > n system is actually none pole-assignable over any (real and complex) output feedbacks, by intrinsic rank deficiency of some submatrix of L. And it is also concretely illustrated that this none pole-assignable mp > n system by static output feedback can be arbitrary pole-assignable system via minimum d-th order dynamic output feedback, which is constructed by deterministic computation under full­rank of some submatrix of $L^{aug}$.

The Study on Application of Flying Inspection Method for the 22.9kV Distribution Line (22.9kV 배전선로 비행점검 방법 적용에 관한 연구)

  • Zhang, Jeong-Il;Kang, Byoung-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.194-198
    • /
    • 2012
  • This paper describes flying inspection apparatus for 22.9kV distribution line. This apparatus is composed of multi-copter(more than 4 propellers), camcorder and remote controller. The existing inspections, such as hot-line inspection job and optical inspection method and distribution Line Checking Robot, have many restrictions. A electric working vehicle and hot-line job license are essential in hot-line inspection job. Besides its high cost, it can't be applied to the electric pole over 18m and road-blocked area. Optical method can't inspect upper side of electric facilities mounted on the electric pole. Robot method can't be applied to the corroded overhead earth wire and nothing of overhead earth wire. To solve the problems, in Korea Electric Power Co., we have applied flying inspection apparatus to the 22.9kV distribution line. The results of trial application show that this paper is practical and effective for the inspection technical method in 22.9kV distribution line

The Analysis of a Fishing System that Employs a Red Seabream Feeding Behavior in the Long Line Fishery (연승어업에서 참돔의 섭식행동을 응용한 어획시스템의 성능 분석)

  • KANG, Kyoung Bum;KOO, Myung-Sung;KIM, Jong Beom;AHN, Jang-Young;CHOI, Chan Moon;LEE, Chang Heon;KIM, Byoung Youb;KIM, Suk Jong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.570-580
    • /
    • 2017
  • In this study, we designed a fishing system to reproduce the underwater movement of the living Sword tip squid (Loligo edulis) used as bait in the red seabream long line fishery, and conducted the experiment of the fishing operation in 2 ways, i.e., a pole and line fishing method (fishermen) and a bait control fishing system used at fishing sites. Based on the catches in fishing operation, the experiment was conducted over a six times (2014 & 2015), and then 107 fishes were caught by the line fishing method while 57 fishes were caught by the bait control fishing system. The fishermen method actively controlled the speed of gear movement upward and downward while checking the reaction of red seabreams to the bite in the process which a jerk was transmitted to single line hook fishing gear manually. The bait control fishing system is a passive method which fishermen visually check only the movements at the end of fishing pole, enabled differentiation of bite reactions of red seabream during fishing operation. Thus, the difference between fishermen method and the bait control fishing system was found to about 53.3% in the catches. We confirmed the possibility of a site fishing operation based on the bait control fishing system designed newly as a result of this study. Improvement is in several areas for commercialization at the site. This fishing system is expected to be able to find wide-ranging applications as a new labor-saving method for the fishing red seabreams if it is applied to the fishing sites after aforesaid process.

Induction Motor Bearing Damage Detection Using Stator Current Monitoring (고정자전류 모니터링에 의한 유도전동기 베어링고장 검출에 관한 연구)

  • Yoon, Chung-Sup;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.36-45
    • /
    • 2005
  • This paper addresses the application of motor current spectral analysis for the detection of rolling-element bearing damage in induction machines. We set the experimental test bed. They is composed of the normal condition bearing system, the abnormal rolling-element bearing system of 2 type induction motors with shaft deflection system by external force and a hole drilled through the outer race of the shaft end bearing of the four pole test motor. We have developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module is checking stator current The effects on the stator current spectrum are described and related frequencies are also determined. This is an important result in the formulation of a fault detection scheme that monitors the stator currents. We utilized the FFT(Fast Fourier Transform), Wavelet analysis and averaging signal pattern by inner product tool to analyze stator current components. Especially, the analyzed results by inner product clearly illustrate that the stator signature analysis can be used to identify the presence of a bearing fault.

A Novel Fault Detection Method of Open-Fault in NPC Inverter System (NPC 인버터의 개방성 고장에 대한 새로운 고장 검출 방법)

  • Lee, Jae-Chul;Kim, Tae-Jin;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2007
  • In this paper, a novel fault detection method for fault tolerant control is proposed when the NPC inverter has a open failure in the switching device. The open fault of switching device is detected by checking the variation of a leg-voltage in the neutral-point-clamped inverter and the two phases control method is used for continuously balance the three phases voltage to the load. It can be achieve the fault tolerant control for improving the reliability of the NPC inverter by the fault detection and reconfiguration. This method has fast detection ability and a simple realization for fault detection, compared with a conventional method. Also, this fast detection ability improved the harmful effects such as DC-link voltage unbalance and overstress to other switching devices from a delay of fault detection. The proposed method has been verified by simulation and experiment.