• Title/Summary/Keyword: Polaronic Conduction

Search Result 4, Processing Time 0.023 seconds

Possible p-wave condensed conductor (or superconductor) for La$_{1-x}Ca_xMnO_3$ films (La$_{1-x}Ca_xMnO_3$ 박막에서 p파 초전도의 가능성)

  • Kim, Hyun-Tak;Kang, Kwang-Yong
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.200-205
    • /
    • 1999
  • In the ferromagnetic phase with electrons for La$_{1-x}$(Ca or Sr)$_x$MnO$_3$, films, a remnant resistivity of the order of 10$^{-8}$ ${\omega}$m is observed up to 100 K and increases exponentially with temperature up to T$_c$ and above one Tesla as a function of magnetic field strength (a positive magnetoresistivity). The phase below T$_c$ is regarded as a polaronic state with a polaronic tunneling conduction. Possible p-wave condensation (or superconductor) with a parabolic density of states and the phase separation are discussed on the basis of the two-fold degeneracy of ${\varrho}_{\delta}$ orbitals.

  • PDF

Dielectric-Spectroscopic and ac Conductivity Investigations on Manganese Doped Layered Na1.9Li0.1Ti3O7 Ceramics (망간이 혼입된 층상구조 Na1.9Li0.1Ti3O7 세라믹스의 유전율 ‒ 분광법과 교류 전도도 측정 연구)

  • Pal, Dharmendra;Pandey, J.L.;Shripal
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • The dielectric-spectroscopic and ac conductivity studies firstly carried out on layered manganese doped Sodium Lithium Trititanates ($Na_{1.9}Li_{0.1}Ti_3O_7$). The dependence of loss tangent (Tan$\delta$), relative permittivity ($\varepsilon_r$) and ac conductivity ($\sigma_{ac}$) in temperature range 373-723K and frequency range 100Hz-1MHz studied on doped derivatives. Various conduction mechanisms are involved during temperature range of study like electronic hopping conduction in lowest temperature region, for MSLT-1 and MSLT-2. The hindered interlayer ionic conduction exists with electronic hopping conduction for MSLT-3. The associated interlayer ionic conduction exists in mid temperature region for all doped derivatives. In highest temperature region modified interlayer ionic conduction along with the polaronic conduction, exist for MSLT-1, MSLT-2, and only modified interlayer ionic conduction for MSLT-3. The loss tangent (Tan$\delta$) in manganese-doped derivatives of layered $Na_{1.9}Li_{0.1}Ti_3O_7$ ceramic may be due to contribution of electric conduction, dipole orientation, and space charge polarization. The corresponding increase in the values of relative permittivity may be due to increase in number of dipoles in the interlayer space while the corresponding decrease in the values of relative permittivity may be due to the increase in the leakage current due to the higher doping.

Dielectric Relaxation and Electrical Conduction Properties of La2NiO4+δ Ceramics (La2NiO4+δ세라믹스의 유전이완 및 전기전도특성)

  • Jung, Woo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.377-383
    • /
    • 2011
  • Thermoelectric power, dc conductivity, and the dielectric relaxation properties of $La_2NiO_{4.03}$ are reported in the temperature range of 77 K - 300 K and in a frequency range of 20 Hz - 1 MHz. Thermoelectric power was positive below 300K. The measured thermoelectric power of $La_2NiO_{4.03}$ decreased linearly with temperature. The dc conductivity showed a temperature variation consistent with the variable range hopping mechanism at low temperatures and the adiabatic polaron hopping mechanism at high temperatures. The low temperature dc conductivity mechanism in $La_2NiO_{4.03}$ was analyzed using Mott's approach. The temperature dependence of thermoelectric power and dc conductivity suggests that the charge carriers responsible for conduction are strongly localized. The relaxation mechanism has been discussed in the frame of the electric modulus and loss spectra. The scaling behavior of the modulus and loss tangent suggests that the relaxation describes the same mechanism at various temperatures. The logarithmic angular frequency dependence of the loss peak is found to obey the Arrhenius law with activation energy of ~ 0.106eV. At low temperature, variable range hopping and large dielectric relaxation behavior for $La_2NiO_{4.03}$ are consistent with the polaronic nature of the charge carriers.

Nano-scale Design of electrode materials for lithium rechargeable batteries

  • Gang, Gi-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.72-72
    • /
    • 2012
  • Lithium rechargeable batteries have been widely used as key power sources for portable devices for the last couple of decades. Their high energy density and power have allowed the proliferation of ever more complex portable devices such as cellular phones, laptops and PDA's. For larger scale applications, such as batteries in plug-in hybrid electric vehicles (PHEV) or power tools, higher standards of the battery, especially in term of the rate (power) capability and energy density, are required. In PHEV, the materials in the rechargeable battery must be able to charge and discharge (power capability) with sufficient speed to take advantage of regenerative braking and give the desirable power to accelerate the car. The driving mileage of the electric car is simply a function of the energy density of the batteries. Since the successful launch of recent Ni-MH (Nickel Metal Hydride)-based HEVs (Hybrid Electric Vehicles) in the market, there has been intense demand for the high power-capable Li battery with higher energy density and reduced cost to make HEV vehicles more efficient and reduce emissions. However, current Li rechargeable battery technology has to improve significantly to meet the requirements for HEV applications not to mention PHEV. In an effort to design and develop an advanced electrode material with high power and energy for Li rechargeable batteries, we approached to this in two different length scales - Atomic and Nano engineering of materials. In the atomic design of electrode materials, we have combined theoretical investigation using ab initio calculations with experimental realization. Based on fundamental understanding on Li diffusion, polaronic conduction, operating potential, electronic structure and atomic bonding nature of electrode materials by theoretical calculations, we could identify and define the problems of existing electrode materials, suggest possible strategy and experimentally improve the electrochemical property. This approach often leads to a design of completely new compounds with new crystal structures. In this seminar, I will talk about two examples of electrode material study under this approach; $LiNi_{0.5}Mn_{0.5}O_2$ based layered materials and olivine based multi-component systems. In the other scale of approach; nano engineering; the morphology of electrode materials are controlled in nano scales to explore new electrochemical properties arising from the limited length scales and nano scale electrode architecture. Power, energy and cycle stability are demonstrated to be sensitively affected by electrode architecture in nano scales. This part of story will be only given summarized in the talk.

  • PDF