• Title/Summary/Keyword: Polarography

Search Result 93, Processing Time 0.018 seconds

Electrochemical Properties of Pentadentate Binucleated Schiff Base Cobalt(Ⅱ) and Manganese(Ⅱ) Complexes in Nonaqueous Solvent (비수용매에서 이핵성 다섯자리 Schiff Base Cobalt(Ⅱ) 및 Manganese(Ⅱ) 착물들의 전기화학적 성질)

  • Ki-Hyung Chjo;Yong-Kook Choi;Song-Ju Lee;Seong-Seop Seo
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.428-441
    • /
    • 1992
  • We synthesized a series of binuclear pentadentate Schiff base complexes such as $Co(Ⅱ)_2$ (BSPP)($H_2O)_2$, $Co(Ⅱ)_2$ (BSPD)($H_2O)_2$, $Mn(Ⅱ)_2$ (BSPP)($H_2O)_2$ and $Mn(Ⅱ)_2$ (BSPD)($H_2O)_2$, mononuclear pentadentate Schiff base complexes such as Co(Ⅱ)(BSP)($H_2O)$ and Mn(Ⅱ)(BSP)($H_2O)$. The composition of these complexes identified by IR, UV-visible spectrum, T.G.A., DSC, and elemental analysis. The electrochemical redox processes have been examined by cyclic voltammetry and differential pulse polarography with glassy carbon electrode in 0.1M TEAP-Py(-DMSO and -DMF) as a supporting electrolyte solution. As a result of electrochemical measurements, the reduction processes for pentadentate binuclear Schiff base cobalt(Ⅱ) and manganese(Ⅱ) complexes occurred to four steps in $M(Ⅲ)_2$ / $Mn(Ⅱ)_2$ and $Mn(Ⅱ)_2$ / $M(Ⅰ)_2$ (M; Co, Mn) two processes through each two reduction steps with one electron, by contrast, the mononuclear pentadentate Schiff base cobalt(Ⅱ) and manganese(Ⅱ) complexes occurred to two steps in M(Ⅲ) / M(Ⅱ) and M(Ⅱ) / M(Ⅰ) (M; Co, Mn) two processes with one electron reduction steps.

  • PDF

Electrochemical Determination of Artemisinin in Artemisia annua L Herbal Tea Preparation and Optimization of Tea Making Approach (개똥쑥 약초차 제조에서 아르테미시닌의 전기화학적 측정과 차를 만드는 최적화로의 접근법)

  • Debnath, Chhanda;Dobernig, Andrea;Saha, Pijus;Ortner, Astrid
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.57-62
    • /
    • 2011
  • Sometimes inhabitants in remote areas have inadequate or no access to modern medicines or medical services. They can get benefit in term of the treatment against malaria by cultivating selected breeding of A. annua and making teas or decoctions from the plant materials following the proper way of tea preparation. In order to have the maximum extraction efficiency for artemisinin, different ways of tea preparations of A. annua were investigated by applying the developed DPP method and described in this article. Tea was prepared by three different ways (cooking, without cooking with/without shaking and microwave oven) with different times. From the results, it has been found that higher concentration of artemisinin (84.7%) can be attained by following the approach for tea preparation without cooking with shaking for 15 minutes (R.S.D. 2.34%). The concentration of artemisinin decreases with cooking more than 1.5 min in microwave oven. The utmost extraction (88.9% of artemisinin) is possible to extract by shaking with boiled 5% ethanol in distilled water (R.S.D. 2.28%).

Synthesis of Cobalt(II), Nickel(II) and Copper(II) Complexes with Tetradentate Schiff Base Ligand of o-BSDT $H_2$ and Electrochemical properties in DMSO (네자리 Schiff Base 리간드의 Cobalt(II), Nickel(II) 및 Copper(II) 착물의 합성과 DMSO용액에서 전기화학적 성질)

  • Ki-Hyung Chjo;Jong-Soon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.509-519
    • /
    • 1987
  • The tetradentate Schiff base ligand, 3,4-bis(salicylidene diimine) toluene, have been prepared by the reaction of salicylaldehyde with 3,4-diaminotoluene by Duff method. The Schiff base ligand reacts with Ni(II), Co(II), and Cu(II) ions to form new complexes, [Ni(o-BSDT)${\cdot}(H_2O)_2$], [Co(o-BSDT)${\cdot}(H_2O)$], and [Cu(o-BSDT)]. It seems that Ni(II) and Ni(II) complexes are hexacoordinated with the Schiff base ligand and two molecules of water, while the Cu(II) complexes are tetracoordinated with the Schiff base. The mole ratio of tetradentate Schiff base ligand to metals was found to be 1 : 1. The redox chemistry of these complexes was investigated by polarography and cyclic voltammetry with glassy carbon electrode in DMSO with 0.1M TEAP${\cdot}$[Ni(o-BSDT)${\cdot}(H_2O)_2$] hav EC reaction mechanisms which undergo a irreversible electron transfer followed by a fast chemical reaction. [Co(o-BSDT)${\cdot}(H_2O)_2$] undergoes a reduction of Co(II) to Co(I) and a oxidation of Co(II) to Co(III), and [Cu(o-BSDT)] undergoes a reduction of Cu(II) to Cu(I).

  • PDF