• Title/Summary/Keyword: Polarization shift keying

Search Result 6, Processing Time 0.02 seconds

Transmission Performance Comparison of Direction Detection-Based 100-Gb/s Modulation Formats for Metro Area Optical Networks

  • Chung, Hwan Seok;Chang, Sun Hyok;Lee, Jonghyun;Kim, Kwangjoon
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.800-806
    • /
    • 2012
  • Transmission performances of direct detection-based 100-Gb/s modulation formats are investigated and compared for metro area optical networks. The effects of optical signal-to-noise ratio sensitivity, chromatic dispersion, cross-channel nonlinearity, and transmission distance on the performance of differential 8-ary phase-shift keying (D8PSK), differential phase-shift keying plus three-level amplitude-shift keying (DPSK+3ASK), and dual-carrier differential quaternary phase-shift keying (DC-DQPSK) are evaluated. The performance of coherent dual-polarization quadrature phase-shift keying (DP-QPSK) with block phase estimation and coherent DP-QPSK with digital differential detection are also presented for reference. According to our analysis, all three direct detection modulation formats could transmit a 100-Gb/s signal over several hundred kilometers of a single-mode fiber link. The results also show that DC-DQPSK outperforms D8PSK and DPSK+3ASK, and the performance of DC-DQPSK is comparable to that of coherent DP-QPSK with digital differential detection. The maximum transmission distance of DC-DQPSK is over 1,000 km, which is enough distance for metro applications.

Performance of multilevel polarization shift keying system (다중레벨 편광편이키잉 시스템의 성능)

  • 강석근;노윤환;주언경
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.7
    • /
    • pp.1-8
    • /
    • 1997
  • In this paper, Stokes parameters which represent the states of polarization of transmitted light are determined by potential function, which is used to obtain signals points in a multidimensional Euclidean structure. And performance of multilevel polarization shift keying(POLSK) system using the obtained parameters is also represented and analyzed. As results, bit error rate of multilevel POLSK system using the potential function is shown to be lower than the conventional one using the distance matrix. And as number of levels increases, the number of photons per bit for bit error rate of 10$^{-9}$ is also increased linearly. The multilevel POLSK system, therefore, is an energy efficient modulation technque as compared with the convnetional ones.

  • PDF

Design of 3-Dimensional Orthogonal Frequency Division Multiplexing (3차원 직교 주파수분할다중화의 설계)

  • Kang, Seog-Geun
    • Journal of Broadcast Engineering
    • /
    • v.13 no.5
    • /
    • pp.677-680
    • /
    • 2008
  • In this paper, a new orthogonal frequency division multiplexing (OFDM) with 3-dimensional (3-D) signal mapper is proposed. Here, the signal mapper consists of signals on the surface of Poincare sphere. If the signal points are uniformly distributed and normalized to have the same average power, the minimum Euclidean distance of a 3-D constellation is much larger than that of a 2-D constellation. Computer simulation shows that the proposed OFDM has much improved error performance as compared with the conventional system.

Design and fabrication of a RFID Reader Antenna in 900MHz Band (900MHz 대역 RFID 리더기 안테나 설계 및 제작)

  • Kim, Chan-Baek;Park, Seong-Il;Ko, Young-Hyuk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.125-128
    • /
    • 2008
  • In this paper, a stand-type planar antenna of 900MHz RFID band is designed and fabricated. As the proposed antenna is stand-type use of air permittivity, Bandwidth used ground height at rectangle patch structure and coaxial feed line is widen. Also wideband width can solve problem that RFID tag attached to things happens frequency shift keying phenomenon by liquid, special metal, temperature, humidity etc. Bandwidth of fabricated antenna to VSWR less than 2 is satisfied 11.9% at $890MHz{\sim}1000MHz$. And proposed antenna is circular polarization antenna of operating characteristics that axial ratio is less than 2 and gain is 6dBi.

  • PDF

Photonic Generation of Frequency-tripling Vector Signal Based on Balanced Detection without Precoding or Optical Filter

  • Qu, Kun;Zhao, Shanghong;Li, Xuan;Zhu, Zihang;Tan, Qinggui
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.134-139
    • /
    • 2018
  • A novel approach for frequency-tripling vector signal generation via balanced detection without precoding and optical filter is proposed. The scheme is mainly utilizing an integrated dual-polarization quadrature phase shift keying (DPQPSK) modulator. In the DPQPSK modulator, one QPSK modulator is driven by an RF signal to generate high-order optical sidebands, while the other QPSK modulator is modulated by I/Q data streams to produce baseband vector signal as an optical carrier. After that, a frequency-tripling 16-quadrature-amplitude-modulation (16QAM) vector millimeter-wave (mm-wave) signal can be obtained by balanced detection. The proposed scheme can reduce the complexity of transmitter digital signal processing. The results show that, a 4 Gbaud baseband 16QAM vector signal can be generated at 30 GHz by frequency-tripling. After 10 km single-mode fiber (SMF) transmission, the constellation and eye diagrams of the generated vector signal perform well and a bit-error-rate (BER) below than 1e-3 can be achieved.

Design of a New 3-D 16-ary Signal Constellation with Constant Envelope (상진폭 특성을 가지는 새로운 3차원 16진 신호성상도의 설계)

  • Choe, Chae-Cheol;Kang, Seog-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2149-2156
    • /
    • 2011
  • In this paper, design of a new 3-dimensional (3-D) 16-ary signal constellation with constant envelope is presented and analyzed. Unlike the conventional 16-ary constellations, all signal points of the new constellation are uniformly located on the surface of a sphere so that they have a unique amplitude level and a symmetrical structure. When average power of the constellations is normalized, the presented 16-ary constellation has around 11.4% increased minimum Euclidean distance (MED) as compared to the conventional ones that have non-constant envelope. As a result, a digital communication system which exploits the presented constellation has 1.2dB improved symbol error rate (SER). While signal points of the conventional constant-envelope constellation are not distributed uniformly on the surface of a sphere, those of the proposed constellation has a completely symmetric distribution. In addition, the new signal constellation has much lower computational complexity for practical implementation than the conventional one. Hence, the proposed 3-D 16-ary signal constellation is appropriate for the application to a communication system which strongly requires a constant-envelope characteristic.